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Abstract  146 

 147 

We assess evidence relevant to Earth’s equilibrium climate sensitivity per doubling of 148 

atmospheric CO2, characterized by an effective sensitivity S. This evidence includes 149 

feedback process understanding, the historical climate record, and the paleoclimate 150 

record. An S value lower than 2 K is difficult to reconcile with any of the three lines of 151 

evidence. The amount of cooling during the Last Glacial Maximum provides strong 152 

evidence against values of S greater than 4.5 K. Other lines of evidence in combination 153 

also show that this is relatively unlikely. We use a Bayesian approach to produce a 154 

probability density (PDF) for S given all the evidence, including tests of robustness to 155 

difficult-to-quantify uncertainties and different priors. The 66% range is 2.6-3.9 K for our 156 

Baseline calculation, and remains within 2.3-4.5 K under the robustness tests; 157 

corresponding 5-95% ranges are 2.3-4.7 K, bounded by 2.0-5.7 K (although such high     -158 

confidence ranges should be regarded more cautiously). This indicates a stronger 159 

constraint on S than reported in past assessments, by lifting the low end of the range. This 160 

narrowing occurs because the three lines of evidence agree and are judged to be largely 161 

independent, and because of greater confidence in understanding feedback processes 162 

and in combining evidence. We identify promising avenues for further narrowing the range 163 

in S, in particular using comprehensive models and process understanding to address 164 

limitations in the traditional forcing-feedback paradigm for interpreting past changes. 165 

 166 

Plain Language Summary 167 

 168 
Earth’s global “climate sensitivity” is a fundamental quantitative measure of the susceptibility of 169 
Earth’s climate to human influence. A landmark report in 1979 concluded that it probably lies 170 
between 1.5-4.5℃ per doubling of atmospheric carbon dioxide, assuming that other influences on 171 
climate remain unchanged. In the 40 years since, it has appeared difficult to reduce this 172 
uncertainty range. In this report we thoroughly assess all lines of evidence including some new 173 
developments. We find that a large volume of consistent evidence now points to a more confident 174 
view of a climate sensitivity near the middle or upper part of this range. In particular, it now 175 
appears extremely unlikely that the climate sensitivity could be low enough to avoid substantial 176 
climate change (well in excess of 2℃ warming) under a high-emissions future scenario. We remain 177 
unable to rule out that the sensitivity could be above 4.5℃ per doubling of carbon dioxide levels, 178 
although this is not likely. Continued research is needed to further reduce the uncertainty and we 179 
identify some of the more promising possibilities in this regard. 180 

1 Introduction 181 

 182 

Earth’s equilibrium climate sensitivity (ECS), defined generally as the steady-state global 183 

temperature increase for a doubling of CO2, has long been taken as the starting point for 184 

understanding global climate changes. It was quantified specifically by Charney et al. (National 185 

Research Council, 1979) as the equilibrium warming as seen in a model with ice sheets and 186 

vegetation fixed at present-day values. Those authors proposed a range of 1.5-4.5 K based on the 187 

information at the time, but did not attempt to quantify the probability that the sensitivity was inside 188 

or outside this range. The most recent report by the Intergovernmental Panel on Climate Change 189 

(Stocker et al., 2013) asserted the same now-familiar range, but more precisely dubbed it a >66% 190 
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(“likely”) credible interval, implying an up to one in three chance of being outside that range. It has 191 

been estimated that—in an ideal world where the information would lead to optimal policy 192 

responses—halving the uncertainty in a measure of climate sensitivity would lead to an average 193 

savings of US$10 trillion in today’s dollars (Hope, 2015). Apart from this, the sensitivity of the 194 

world’s climate to external influence is a key piece of knowledge that humanity should have at its 195 

fingertips. So how can we narrow this range? 196 

 197 

Quantifying ECS is challenging because the available evidence consists of diverse strands, none 198 

of which is conclusive by itself. This requires that the strands be combined in some way. Yet, 199 

because the underlying science spans many disciplines within the Earth Sciences, individual 200 

scientists generally only fully understand one or a few of the strands. Moreover, the interpretation 201 

of each strand requires structural assumptions that cannot be proven, and sometimes ECS 202 

measures have been estimated from each strand that are not fully equivalent. This complexity and 203 

uncertainty thwarts rigorous, definitive calculations and gives expert judgment and assumptions a 204 

potentially large role. 205 

 206 

Our assessment was undertaken under the auspices of the World Climate Research Programme's 207 

Grand Science Challenge on Clouds, Circulation and Climate Sensitivity following a 2015 208 

workshop at Ringberg Castle in Germany. It tackles the above      issues, addressing three 209 

questions:  210 

 211 

1) Given all the information we now have, acknowledging and respecting the uncertainties, 212 

how likely are very high or very low climate sensitivities, i.e., outside the presently accepted 213 

likely range of 1.5-4.5 K (IPCC, 2013)?  214 

2) What is the strongest evidence against very high or very low values?   215 

3) Where is there potential to reduce the uncertainty?  216 

In addressing these questions, we broadly follow the example of Stevens et al. (2016, hereafter 217 

SSBW16) who laid out a strategy for combining lines of evidence and transparently considering 218 

uncertainties. The lines of evidence we consider, as in SSBW16, are modern observations and 219 

models of system variability and feedback processes; the rate and trajectory of historical warming; 220 

and the paleoclimate record. The core of the combination strategy is to lay out all the 221 

circumstances that would have to hold for the climate sensitivity to be very low or high given all the 222 

evidence (which SSBW16 call “storylines”). A formal assessment enables quantitative probability 223 

statements given all evidence and a prior distribution, but the “storyline” approach allows readers 224 

to draw their own conclusions about how likely the storylines are, and points naturally to areas with 225 

greatest potential for further progress. Recognizing that expert judgment is unavoidable, we 226 

attempt to incorporate it in a transparent and consistent way (e.g., Oppenheimer et al., 2016). 227 

 228 

Combining multiple lines of evidence will increase our confidence and tighten the range of likely 229 

ECS if the lines of evidence are broadly consistent. If uncertainty is underestimated in any 230 

individual line of evidence—inappropriately ruling out or discounting part of the ECS range—this 231 

will make an important difference to the final outcome (see example in Knutti et al., 2017). 232 

Therefore, it is vital to seek a comprehensive estimate of the uncertainty of each line of evidence 233 

that accounts for the risk of unexpected errors or influences on the evidence. This must ultimately 234 

be done subjectively. We will therefore explore the uncertainty via sensitivity tests and by 235 

considering ‘what if’ cases in the sense of SSBW16, including what happens if an entire line of 236 

evidence is dismissed. 237 
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 238 

The most recent reviews (Collins et al., 2013, Knutti et al., 2017) have considered the same three 239 

main lines of evidence considered here, and have noted they are broadly consistent with one 240 

another, but did not attempt a formal quantification of the PDF of ECS. Formal Bayesian 241 

quantifications have been done based on the historical warming record (see Bodman and Jones 242 

2016 for a recent review), the paleoclimate record (PALAEOSENS, 2012), a combination of 243 

historical and last millennium records (Hegerl et al., 2006), and multiple lines of evidence from 244 

instrumental and paleo records (Annan and Hargreaves, 2006). An assessment based only on a 245 

subset of the evidence will yield too wide a range if the excluded evidence is consistent (e.g. 246 

Annan and Hargreaves, 2006), but if both subsets rely on similar information or assumptions, this 247 

co-dependence must be considered when combining them (Knutti and Hegerl 2008). Therefore, an 248 

important aspect of our assessment is to explicitly assess how uncertainties could affect more than 249 

one line of evidence (cf. section 6), and to assess the sensitivity of calculated PDFs to reasonable 250 

allowance for interdependencies of the evidence. 251 

 252 

Another key aspect of our assessment is that we explicitly consider process understanding via 253 

modern observations and process models as a newly robust line of evidence (section 3). Such 254 

knowledge has occasionally been incorporated implicitly (via the prior on ECS) based on the 255 

sample distribution of ECS in available climate models (Annan and Hargreaves, 2006) or expert 256 

judgments (Forest et al., 2002), but climate models and expert judgments do not fully represent 257 

existing knowledge or uncertainty relevant to climate feedbacks, nor are they fully independent of 258 

other evidence (in particular that from the historical temperature record, see Kiehl, 2007). Process 259 

understanding has recently blossomed, however, to the point where substantial statements can be 260 

made without simply relying on climate model representations of feedback processes, creating a 261 

new opportunity exploited here.  262 

 263 

Climate models (specifically general circulation models, or GCMs) nonetheless play an increasing 264 

role in calculating what our observational data would look like under various hypothetical ECS 265 

values—in effect translating from evidence to ECS. Their use in this role is now challenging long-266 

held assumptions, for example showing that 20th-century warming could have been relatively 267 

weak even if ECS were high (section 4), that paleoclimate changes are strongly affected by factors 268 

other than CO2, and that climate may become more sensitive to greenhouse gases in warmer 269 

states (section 5). GCMs are also crucial for confirming how modern observations of feedback 270 

processes are related to ECS (section 3). Accordingly, another novel feature of this assessment 271 

will be to use GCMs to refine our expectations of what observations should accompany any given 272 

value of ECS and thereby avoid biases now evident in some estimates of ECS based on the 273 

historical record using simple energy budget or energy balance model arguments. GCMs are also 274 

used to link global feedback strengths to observable phenomena. However, for reasons noted 275 

above, we avoid relying on GCMs to tell us what values to expect for key feedbacks except where 276 

the feedback mechanisms can be calibrated against other evidence. Since we use GCMs in some 277 

way to help interpret all lines of evidence, we must be mindful that any errors in doing this could 278 

reinforce across lines (see section 6.2). 279 

 280 

We emphasize that this assessment begins with the evidence on which previous studies were 281 

based, including new evidence not used previously, and aims to comprehensively synthesize the 282 

implications for climate sensitivity both by drawing on key literature and by doing new calculations. 283 

In doing this, we will identify structural uncertainties that have caused previous studies to report 284 

different ranges of ECS from (essentially) the same evidence, and account for this when assessing 285 

what that underlying evidence can tell us.  286 
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 287 

An issue with past studies is that different or vague definitions of ECS may have led to perceived, 288 

unphysical discrepancies in estimates of ECS that hampered abilities to constrain its range and 289 

progress understanding. Bringing all the evidence to bear in a consistent way requires using a 290 

specific measure of ECS, so that all lines of evidence are linked to the same underlying quantity. 291 

We denote this quantity S (see section 2.1). The implications for S of the three strands of evidence 292 

are examined separately in sections 3-5, and anticipated dependencies between them are 293 

discussed in section 6. To obtain a quantitative PDF of S, we follow SSBW16 and many other 294 

studies by adopting a Bayesian formalism, which is outlined in sections 2.2-2.6. The results of 295 

applying this to the evidence are presented in section 7, along with the implications of our results 296 

for other measures of climate sensitivity and for future warming. The overall conclusions of our 297 

assessment are presented in section 8.  We note that no single metric such as S can fully describe 298 

or predict climate responses, and we discuss its limitations in section 8.2, as well as implications of 299 

our work for future research. 300 

 301 

While we endeavor to write for a broad audience, it is necessary to dip into technical detail in order 302 

to support the reasoning and conclusions, and some of the methods used are novel and require 303 

explanation. We have therefore structured this assessment so that the discussions of the three 304 

lines of evidence (sections 3-5) are quasi-independent, with separate introductions, detailed 305 

analyses, and conclusions. Readers who are not interested in the details can gain an overview of 306 

the key points from the concluding portions of these sections. Likewise, readers not interested in 307 

details of the statistical method could skip most of section 2 and focus on the “storylines” 308 

presented in sections 3-5.  The probabilities given in section 7 derive from the statistical method, 309 

but the independence issues discussed in section 6 are important for either quantitative or 310 

qualitative assessment of the evidence. 311 

 312 
 313 

2. Methods 314 

 315 
This section first explains the measure of ECS we will use and how it relates to others (section 316 

2.1), then presents the simple physical model used to interpret evidence (section 2.2). Section 2.3 317 

summarizes the overall methodology, and section 2.4 goes over this in more detail, beginning with 318 

a basic review of Bayesian inference intended mainly for those new to the topic while focusing on 319 

concepts relevant to the ECS problem (section 2.4.1), then working through the solution of the 320 

model and sampling approach (sections 2.4.2-2.4.4). For other basic introductions to Bayesian 321 

inference, see Stone (2012) or Gelman et al. (2013). 322 

 323 

2.1 Measures of climate sensitivity 324 

 325 

Climate sensitivity is typically quantified as warming per doubling of CO2, but this is by tradition. 326 

One could also consider the warming per unit radiative forcing, or the increment of additional net 327 

power exported to space per unit warming (the feedback parameter, i.e, energetic “spring 328 

constant” of the system) denoted λ. Indeed (see sections 2.2 and later) we will find it easier to write 329 

our evidence in terms of λ rather than warming-per-doubling (ECS), making the definition of an 330 

ECS optional. One can imagine a range of CO2 forcing scenarios, each yielding its own value for 331 
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the ECS; each such scenario also implies a matching value for λ. Our approach simultaneously 332 

constrains both λ and S (see section 2.3). 333 

 334 

In choosing the reference scenario to define sensitivity for this assessment, for practical reasons 335 

we depart from the traditional Charney ECS definition (equilibrium response with ice sheets and 336 

vegetation assumed fixed) in favor of a comparable and widely used, so-called “effective climate 337 

sensitivity” S derived from system behavior during the first 150 years following a (hypothetical) 338 

sudden quadrupling of CO2. During this time the system is not in equilibrium, but regression of 339 

global-mean top-of-atmosphere energy imbalance onto global-mean near-surface air temperature, 340 

extrapolated to zero imbalance, yields an estimate of the long-term warming valid if the average 341 

feedbacks active during the first 150 years persisted to equilibrium (Gregory et al., 2004). This 342 

quantity therefore approximates the long-term Charney ECS (e.g., Danabasoglu and Gent, 2009), 343 

though how well it does so is a matter of active investigation addressed below. Our reference 344 

scenario does not formally exclude any feedback process, but the 150-year time frame minimizes 345 

slow feedbacks (especially ice sheet changes). 346 

 347 

This choice involves weighing competing issues. Crucially, effective sensitivity (or other measures 348 

based on behavior within a century or two of applying the forcing) is more relevant to the time 349 

scales of greatest interest (i.e., the next century) than is equilibrium sensitivity, and effective 350 

sensitivity has been found to be strongly correlated (r=0.95) with the magnitude of model-simulated 351 

21st-century warming under a high-emission scenario (Gregory et al., 2015, Grose et al., 2017, 352 

2018). It is also widely available from climate models (e.g., Andrews et al., 2012) which facilitates 353 

many steps in our analysis. All candidate climate sensitivity measures are based on an outcome of 354 

a hypothetical scenario never realized on Earth. Ultimately models or theory are required to relate 355 

the outcome of any one scenario to that of any other. The ideal measure S is one that is as closely 356 

related as possible to scenarios of practical interest: those which produced evidence (e.g., the 357 

historical CO2 rise), or which might occur in the future. Effective sensitivity is a compromise that is 358 

relatively well related to both the available      past evidence and projected      future warmings     .  359 

 360 

The Transient Climate Response (TCR, or warming at the time of CO2 doubling in an idealized 1% 361 

per year increase scenario), has been proposed as a better measure of warming over the near- to 362 

medium-term; it may be more generally related to peak warming, and better constrained (in 363 

absolute terms) by historical warming, than S (Frame et al., 2005; Froelicher et al., 2013). It may 364 

also be better at predicting high-latitude warming (Grose et al., 2017). But as mentioned above, 365 

21st-century global-mean trends under high emissions are better predicted by S than by TCR, 366 

perhaps because of nonlinearities in forcing or response (Gregory et al., 2015) or because TCR 367 

estimates are affected by noise (Sanderson, 2020). TCR is also less directly related to the other 368 

lines of evidence than is S. In this study we will briefly address TCR in sections 4 and 7.4, but will 369 

not undertake a detailed assessment. 370 

 371 
The IPCC (at least through AR5) formally retains a definition of ECS based on long-term 372 

equilibrium. Much of the information they use to quantify ECS however exploits GCM calculations 373 

of effective (e.g., Andrews et al., 2012), not equilibrium, sensitivity, and it appears that the 374 

distinction is often overlooked. In this report, we will use “long-term” to describe processes and 375 

responses involved in the effective sensitivity S, and “equilibrium” for the fully equilibrated ECS. 376 

The ECS differs from S due to responses involving the deep ocean, atmospheric composition and 377 

land surface that emerge on centennial time scales (e.g., Frey and Kay, 2018; see section 5), 378 

though calculations here (following Charney and past IPCC reports) do not include ice-sheet 379 

changes.  380 
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 381 

To calculate the ECS in a fully coupled climate model requires very long integrations (>1000 382 

years). Fortunately, a recent intercomparison project (LongrunMIP; Rugenstein et al., 2019a) has 383 

organized long simulations from enough models to now give a reasonable idea of how ECS and S 384 

are likely to be related. 385 

 386 

Relationships between S and several other quantities are shown in Fig. 1      from available 387 

models.  Predicted S is reasonably well correlated with the other sensitivity measures (Fig. 1     a), 388 

indicating that S is a useful measure, but also that the conclusions of this assessment would still 389 

hold if another measure were used. Note that we do not consider here all possible measures; see 390 

Rugenstein et al. (2019b) for a discussion of some additional ones, which also generally correlate 391 

well with S. S is less well correlated to TCR (r=0.81) than to ECS (r=0.94), as expected since the 392 

TCR is sensitive to ocean heat uptake efficiency as well as to λ. 393 

 394 

Although the measures correlate well, all available LongRunMIP models equilibrate to a higher 395 

warming at 4xCO2 than S from the same simulation (Fig. 1     a, small symbols; details of how the 396 

equilibrium is estimated are given in Rugenstein et al. (2019a,b). The median equilibrium warming 397 

per doubling at 4xCO2 is 17% higher than the median S, suggesting a robust amplifying impact of 398 

processes too slow to emerge in the first 150 years. This occurs due to responses of the climate 399 

system on multidecadal to millennial time scales, including “pattern effects” from differences 400 

between ocean surface warming patterns that have not fully equilibrated within the first century or 401 

two (sections 3.3.2, 4.2); slow responses of vegetation; and temperature dependence of 402 

feedbacks. Evidence also shows, however (section 5.2.3), that sensitivity to two doublings (as 403 

assumed for S) is somewhat greater than that to one doubling. This state-dependence partly 404 

cancels out the low bias in the 150-year regression, leading to an ECS (for one doubling) that 405 

averages only 6% greater than S over the simulations, although the ratio of the two is uncertain so 406 

we assign an uncertainty of ±20% (about 50%      wider than the sample standard deviation in the 407 

available GCMs). Thus, statements about S in this assessment can also be interpreted, to 408 

relatively good approximation, as statements about ECS for one doubling of CO2. (We use the 409 

symbol ζ to represent this difference, with 1+ζ therefore being the ratio of our target S to the long-410 

term equilibrium.) 411 

 412 
Fig. 1     b shows the relationships of S to future warming. The warming trend over the 21st 413 

century (Fig. 1     b) is also well correlated with S, especially for the highest-emission scenario 414 

RCP8.5. The correlations are not quite as strong for the weaker-forcing cases, suggesting that 415 

global temperature changes are harder to predict (in a relative sense) in more highly mitigated 416 

scenarios. This is mostly due to a weaker warming signal, but there is also a slightly greater model 417 

spread, reasons for which are not currently understood. 418 

 419 

To conclude, the effective sensitivity S that we will use—a linear approximation to the equilibrium 420 

warming based on the first 150 years after an abrupt CO2 quadrupling—is a practical option for 421 

measuring sensitivity, based on climate system behavior over the most relevant time frame while 422 

still approximating the traditional ECS. Moreover, the quantitative difference between this and the 423 

traditional equilibrium measure based on a CO2 doubling (with fixed ice sheets) appears to be 424 

small, albeit uncertain. This uncertainty is skewed, in the sense that long-term ECS could be 425 

substantially higher than S but is very unlikely to be substantially lower. Further work is needed to 426 

better understand and constrain this uncertainty. 427 

 428 



  

10 
 

   

2.2 Physical model  429 

  430 

Here we review the equations that will be used to relate the evidence to the key unknowns.  431 

According to the conventional forcing-feedback theory of the climate system, the net downward 432 

radiation imbalance ∆N at the top-of-atmosphere (TOA) can be decomposed into a radiative 433 

forcing ∆F, a radiative response ∆R due directly or indirectly to forced changes in temperature 434 

which is the feedback, and variability V unrelated to the forcing or feedback:  435 

 436 

∆𝑁 = ∆𝐹 + 𝛥𝑅 + 𝑉     (1     ) 437 

Variability V can arise due to unforced variations in upwelling of cold water to the surface, cloud 438 

cover, albedo, etc. The net radiation balance ∆N consists of the net absorbed shortwave (SW) 439 

solar radiation minus the planet’s emission of longwave (LW) radiation. Taking the radiative 440 

response ∆R as proportional to first order to the forced change in global mean surface air 441 

temperature ∆T, equation (1     ) becomes 442 

     ∆𝑁 = ∆𝐹 + 𝜆∆𝑇 + 𝑉     (     2) 443 

where the climate feedback parameter λ is defined as the sensitivity of the net TOA downward 444 

radiation N to T, dN/dt, (at fixed F). If this feedback parameter is negative, the system is stable. 445 

In equilibrium over sufficiently long time-scales (assuming λ<0) the net radiation imbalance ∆N and 446 

mean unforced variability V will each be negligible, leaving a balance between the (constant) 447 

forcing ∆F and radiative response ∆R. In this case equation (     2) can be written 448 

     𝛥𝑇 = −𝛥𝐹/𝜆      (     3) 449 

The case of a doubling of CO2 defines the climate sensitivity 450 

𝑆 =  − 
∆𝐹2𝑥𝐶𝑂2

𝜆
,      (     4)  451 

 452 

where ∆F2xCO2 is defined as the radiative forcing per CO2 doubling (noting that since our reference 453 

scenario involves two doublings, ∆F2xCO2 is defined as half the effective forcing in that scenario). 454 

Estimation of this quantity is discussed in section 3.2.1. Note that while the above equations 455 

assume equilibrium, our reference scenario (section 2.1) is not an equilibrium scenario; however, 456 

because in this scenario ∆N is zero (by construction) at the time of the projected equilibrium 457 

warming ∆T, these equations still hold.  458 

 459 

Finally we note that the total system feedback λ can be decomposed into the additive effect of 460 

multiple feedbacks in the system of strengths λi, 461 

  462 

 λ = Σ λi.        (     5) 463 

   464 

These feedbacks represent how the TOA radiation balance is altered as the climate warms by 465 

forced changes in identified radiatively active constituents of the climate system. In this study these 466 

are represented as six feedback components: the Planck feedback, combined water vapor and 467 

lapse rate feedback, total cloud feedback, surface albedo feedback, stratospheric feedback and an 468 

additional atmospheric composition feedback. These individual feedback components are 469 

elaborated in section 3, where evidence is presented to constrain each of them (sections 3.3, 3.4; 470 
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Table      1). Other process evidence is presented (section 3.5) which constrains the total, λ. 471 

Finally, so-called “emergent-constraint” studies are discussed (section 3.6) which tie S to some 472 

observable in the present-day climate, thereby constraining λ and S. For reasons discussed later 473 

however they are not used in our Baseline calculation, but are explored via a sensitivity test. 474 

 475 

The other evidence used (sections 4, 5) comes from past climate changes and typically is 476 

interpreted via eq     s. (     2,      3) in previous climate sensitivity studies. These have typically 477 

assumed that the equations apply to any relevant climate change with universal values of λ and S, 478 

provided that the same feedbacks are counted therein (cf. eq     . (     5)). We will likewise apply 479 

these equations simultaneously to different past climate change scenarios, leading to a set of 480 

relationships shown graphically in Figure      2 (which offers a picture of our overall model, in 481 

particular its dependence structure; see section 2.4.2 for more information).  482 

 483 

Recent work however has shown that effective λ (the value that satisfies eq. (     2) for some 484 

climate-change scenario) can vary significantly across scenarios even when the same feedbacks 485 

are nominally operating. All measurements relevant to climate sensitivity come from the recent 486 

historical period (during which internal variability may play a large role and the climate is far out of 487 

equilibrium; section 4) or from proxy reconstructions of past climate equilibria (during which the 488 

climate may have been quite different to that of the reference scenario; section 5). Thus, possible 489 

variations in the apparent λ during those time periods must be accounted for. Two particular issues 490 

are recognized. First, feedbacks can change strength in different climate states due to direct 491 

dependence on global temperature or indirect dependence (e.g. via snow or ice cover), or other 492 

differences in the earth system (e.g., topography). Second, the net outgoing radiation ∆N can 493 

depend not only on the global mean surface temperature but also on its geographic pattern ∆T’, 494 

leading to an apparent dependence of λ on ∆T’ when applying eq. (     2). Such pattern variations 495 

can arise either because of heterogeneous radiative forcings, lag-dependent responses to 496 

forcings, or unforced variability. To use such observations to constrain our S and λ, it is important 497 

to account for these effects. Note that these effects are distinct from atmospheric “adjustments” to 498 

applied radiative forcings (Sherwood et al., 2015), which scale with the forcing and are included as 499 

part of the effective radiative forcing ∆F.  500 

 501 

We account for impacts on λ by defining an additive correction ∆λ for each past climate change      502 

representing the difference between its apparent λ and the “true” λ defined by our reference 503 

scenario. For simplicity we define these corrections to subsume both forcing-related and unforced 504 

variations, so that henceforth V=0. Equation (     2) then becomes 505 

 506 

∆𝑁 = ∆𝐹 + (𝜆 −  𝛥𝜆)𝛥𝑇.    (     6) 507 

  508 

where λ is the “true” value we want to estimate. From the chain rule, having assigned to ∆λ two 509 

components, we obtain: 510 

 511 

𝛥𝜆 =
𝜕𝜆

𝜕𝑇
𝛥𝑇 +  

𝜕𝜆

𝜕𝑇′(𝑥)
𝛥𝑇′(𝑥)  512 

           = ∆𝜆𝑠𝑡𝑎𝑡𝑒 + ∆𝜆𝑝𝑎𝑡𝑡𝑒𝑟𝑛 .     (     7) 513 

 514 

 515 

State dependence. The first term represents state dependence: the concept that the feedbacks in 516 

a glacial climate, for example, might not remain the same strength over the next century.  Ice-517 

albedo feedback for example has long been expected to be climate sensitive (Budyko, 1969; 518 
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Sellers, 1969), and some studies have found strong sensitivity of cloud feedbacks (Caballero and 519 

Huber, 2013). The simplest parameterization of this is to add a quadratic dependence of net 520 

outgoing radiation on ∆T, which yields a linear dependence of total feedback λ, 521 

 522 

     ∆λstate =  2 α ∆T 523 

 524 

There are however reasons to expect changes could be nonlinear (for example discontinuous 525 

changes in cloud feedbacks when ice sheets disappear) so this formulation will not always be used 526 

(see section 5). State-dependence corrections are made only for paleoclimate evidence, and state 527 

dependence of ∆F2xCO2 is subsumed into that of λ. 528 

 529 

Pattern Effects. The second term represents the “pattern effect” and expresses the possibility that 530 

different patterns of warming will trigger different radiative responses. The pattern effect is 531 

significant whenever (a) the pattern of temperature change differs from that in the reference 532 

scenario and (b) this difference in pattern is radiatively significant, i.e., alters the global mean top-533 

of-atmosphere net radiation. Such patterns can arise either due to non-CO2 forcings, lags in 534 

response, or unforced variability. In section 4.2, the possible existence of a pattern effect arising 535 

from transient warming patterns that do not resemble the eventual equilibrium response is 536 

discussed further. Pattern effects may also complicate the comparison of estimates derived from 537 

proxy reconstructions of past equilibria, if the resulting SST patterns differ from those of the 538 

reference scenario. However, in the absence of reliable reconstructions of past warming patterns 539 

and a dearth of existing literature addressing this, here we do not explicitly consider paleoclimate 540 

pattern effects. We note that the concept of forcing “efficacy” (i.e., Hansen et al., 2005; Winton et 541 

al., 2010; Marvel et al., 2016; Stahl et al., 2019), in which one unit of radiative forcing produces a 542 

different temperature response depending on where, geographically, it is applied, can be attributed 543 

to a pattern effect (e.g., Rose et al., 2014) or to a forcing adjustment. Our estimated historical and 544 

paleo forcings ∆F will include uncertainties from adjustment/efficacy effects.  545 

 546 

Time Scale.  Finally, we note that any definition of planetary sensitivity depends on the timescale 547 

considered. Our S incorporates only feedbacks acting on time scales of order a century. Traditional 548 

ECS allows for more complete equilibration of the system, albeit with some feedbacks explicitly 549 

excluded (see section 2.1). In this report we assume that ECS and S are related via 550 

 551 

     ECS = (1+ζ) S .     (     8) 552 

 553 

See section 5.2.3 for more information. Earth System Sensitivity, by contrast, reflects the slower 554 

feedback processes such as changes to the carbon cycle and land ice. Due to the lack of 555 

information on short temporal scales, most paleoclimate reconstructions necessarily incorporate 556 

the effects of these slow feedbacks. The difference between ESS and S or ECS is not relevant to 557 

the analyses in sections 3 and 4, but is discussed further in section 5.3. 558 

 559 

2.3 Statistical method: summary 560 

 561 
 562 

To obtain probability distributions of the various quantities introduced and mathematically linked in 563 

section 2.2, we adopt the Bayesian interpretation of probability, which describes our uncertain 564 

beliefs concerning facts that are not intrinsically random but about which our knowledge is 565 



  

13 
 

   

uncertain (e.g., Bernardo and Smith, 1994). The Bayesian approach has been adopted in many 566 

past studies inferring climate sensitivity from historical or paleoclimate data (see sections 4 and 5), 567 

and is used for other climate-relevant problems such as data assimilation (Law and Stuart, 2012), 568 

remote sensing (Evans et al., 1995), and reconstruction of past temperatures (Tingley and 569 

Huybers, 2010), among others. 570 

 571 

The basic expression of Bayes’ rule for the case of unknown variables is 572 

 573 

𝑝(𝛷|𝐸) =
𝑝(𝐸|𝛷)𝑝(𝛷)

𝑝(𝐸)
    (     9) 574 

 575 

where Φ is a vector of variables (in our case feedbacks λi and total λ, forcings, temperature 576 

changes, parameters representing ∆λ’s, and S), and E represents some evidence about these 577 

variables. p(Φ|E) is our sought-for posterior probability density of Φ given (conditional on) E, i.e., 578 

the joint PDF of all the variables considering the evidence. On the right-hand side, p(E|Φ), the 579 

likelihood, measures the probability of the evidence E for any given Φ and is what quantifies the 580 

constraint offered by the evidence. p(Φ) is our prior for Φ, that is, the PDF we would assign to Φ in 581 

the absence of E. p(E), the overall probability of E, is essentially a normalization constant. A key 582 

insight is that a PDF can never be determined by evidence alone, but begins with one’s prior 583 

expectations p(Φ) which are then modified by the evidence. The PDF is small for Φ that are judged 584 

implausible at the outset (small prior) or unlikely to have led to the observed evidence (small 585 

likelihood). If the evidence is strong enough to restrict values to a sufficiently narrow range, the 586 

prior becomes practically irrelevant; this is typical for standard scientific measurements and the 587 

prior is usually unexamined. It is unfortunately not the case for climate sensitivity, so we need to 588 

pay attention to the prior. 589 

 590 

Because of the structure of our problem (in particular that ∆F2xCO2 is relatively well known and 591 

many conditional independencies are expected among the variables, see section 2.4.2), the Bayes 592 

result (     9) can approximately be written in terms of λ alone: 593 

 594 

p(λ | E) ∝ p(λ | Eproc) p(Ehist | λ) p(Epaleo | λ)    (     10) 595 

 596 

and a similar equation can be written for S. Thus the PDF of either sensitivity measure is 597 

approximately proportional to the product of three components, one for each of our lines of 598 

evidence, where Eproc is the process evidence and so on. The first term on the right-hand side of 599 

eq. (     10) is the PDF given only our process understanding and an assumed prior on the 600 

feedbacks; this is estimated in section 3. The second and third terms are marginal likelihoods of 601 

the historical and paleo evidence as functions of the sensitivity measure, worked out (sections 4-5) 602 

by directly computing the probability of our best-estimate warming as a function of all variables 603 

using the equations given in section 2.1. The posterior PDFs will be shown in section 7 (and 604 

employ a fully accurate calculation viz. eq. (     9) with full likelihoods rather than marginal ones; 605 

see section 2.4). Although eq. (     10) is not exact, it is a very good approximation helpful in 606 

understanding results. 607 

 608 

Importantly each term in eq. (     10) is computed using a model (cf. section 2.6), and involves 609 

judgments about structural uncertainty including limitations of the model. Our goal is for each term 610 

to represent fully educated and reasonable beliefs. In sections 3-5 we will sometimes present a 611 

range of calculations and evidence and then assert a quantitative likelihood informed by the totality 612 

of this evidence and background knowledge. This will to some extent be unavoidably subjective.  613 
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 614 

A key assumption behind the multiplication in eq. (     10) (also made in the fully accurate 615 

calculation) is that the lines of evidence are independent, which we assume for our Baseline 616 

calculation. For example, this means that learning the true historical aerosol radiative forcing would 617 

not alter our interpretation of the paleo or process evidence, and so on for other uncertainties. The 618 

plausibility of this assumption and consequences of relaxing it are explored in different ways in 619 

sections 6 and 7. 620 

 621 

Many past studies (see sections 3-5) have produced PDFs of S based on a single line of evidence 622 

represented by one likelihood term in eq. (     10). One might think that if two such likelihoods from 623 

different evidence look different, it means there is some inconsistency or problem in the way 624 

evidence is being interpreted. This is a misconception. Suppose one line of evidence demonstrates 625 

S is above 3 K and the other that it is between 0 and 4 K; each by itself would yield a very different 626 

PDF, but together, they simply say S must be between 3 K and 4 K. This is embodied in eq. (     627 

10). The difference in ranges is no reason to question either line of evidence so long as there is 628 

reasonable overlap. This point will be revisited in section 8 when discussing what turns out to be 629 

strong similarity among our lines of evidence. 630 

 631 

In general, as discussed above, posterior PDFs depend on a (multivariate) prior. This prior is 632 

placed on all variables in the system and must obey the model equations (section 2.2) which force 633 

the beliefs it expresses about different variables to be consistent. In practice one begins with 634 

independent variables (in our case the individual feedbacks λi, ∆F2xCO2, and for each past climate 635 

change the forcing ∆F, observational error for ∆T, and parameters for ∆λ; see sections 4 and 636 

section 5). A prior on the dependent variables (i.e., the so-called prior predictive distribution), such 637 

as λ and S, is then determined by the independent-variable prior and the model. In cases where 638 

one has prior knowledge about a dependent variable X, the prior on the independent variables can 639 

be adjusted so that the prior predictive distribution of X reflects this (see e.g., Wang et al., 2018). 640 

 641 

For each independent variable except the λi, we specify a marginal prior PDF by expert judgment 642 

using available evidence, discussed in the relevant section 3-5. This is typical of past Bayesian 643 

studies. The knowledge used to specify the prior for each variable is specific to that variable and 644 

not used elsewhere (this is important for the historical forcing PDF, section 4.1.1). For the λi, we 645 

explicitly consider a likelihood of each feedback’s evidence Ei and a separate prior; i.e, the PDF of 646 

λi is p(λi)p(Ei|λi). All of these prior PDFs adjust when the evidence is considered, resulting in 647 

posterior PDFs. 648 

 649 

Our baseline choice for the prior p(λi), which is consistent with past work on estimating feedbacks 650 

components with which we are familiar, is uniform (over negative and positive values) and 651 

independent between feedbacks (i.e., learning information about one feedback would not alter our 652 

beliefs about others in the absence of other information on S; see section 7.2 for more discussion). 653 

From eq. (     5), this implies a prior on λ that is also uniform across positive and negative values. 654 

Thus we don’t rule out an unstable climate a priori. An unstable climate is however ruled out by 655 

non-process evidence (i.e., the length and stability of Earth’s geologic record). For efficiency, at the 656 

outset we eliminate from our numerical calculations individual λi for which the process likelihood is 657 

less than 10–10. Note that if the λi priors are restricted—e.g., a broad Gaussian rather than 658 

uniform—results are essentially unaffected     , since values far away from zero are ruled out by 659 

evidence. 660 

 661 

We also consider a different multivariate prior PDF, specified in such a way as to induce a prior 662 
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predictive distribution on S (via eq.      4) that is uniform from near 0 up to 20 K. This assigns high 663 

prior belief to combinations of λi that happen to sum to small negative λ, and zero belief to 664 

combinations summing to positive λ (for which S is undefined). Implementation of priors is further 665 

discussed in section 2.4.3, and issues concerning the choice of prior are discussed in section 7.2. 666 

 667 

2.4 Statistical method: Further information 668 

2.4.1 Introduction to Bayesian Inference modelling  669 

 670 

Bayes’ Theorem arises as a consequence of the laws of probability. Considering all possible Φ and 671 

all E that could have eventuated, the joint density (or probability, or PDF) of E and Φ of the real 672 

world, p(E,Φ), can be decomposed in two different ways via 673 

 674 

p(E,Φ) = p(Φ|E)p(E) = p(E|Φ)p(Φ) 675 

 676 

which immediately leads to eq. (     9). 677 

 678 

The likelihood p(E|Φ) is determined by the inference model, which takes the variables as an input 679 

and predicts what would be observed as a consequence of these variables. It is often a source of 680 

confusion. Although expressed as a probability (of E), once E is known, p(E|Φ) is best thought of 681 

as a relative measure of the consistency of the evidence with each value of Φ, according to our 682 

inference model. Low likelihoods indicate a Φ that would be unlikely to give rise to the evidence 683 

that was seen, and if the likelihood is low enough, we would say this Φ is inconsistent with that 684 

evidence. Bayes’ Theorem says that the probability of Φ given evidence is determined by two 685 

things: the a priori plausibility of Φ, and the consistency of Φ with the evidence. Strictly speaking, 686 

“evidence” E should be observations of the real world. However in this assessment (section 3 in 687 

particular) we will also selectively consider as evidence the emergent behavior of numerical 688 

simulations of processes (for example large-eddy simulations of cloud systems), where the 689 

numerical model is informed by, and tested against, observations not used elsewhere in the 690 

assessment. 691 

  692 

The roles of the prior and likelihood are most simply illustrated by an example of a test for a rare 693 

disease. If the test correctly identifies both diseased and non-diseased patients 95% of the time, 694 

but only 1% of people tested carry the disease, then a patient who tests positive still only has 695 

~16% probability of carrying the disease. This is because even though the likelihood p(E|Φ) of the 696 

positive test result is high (0.95) under the hypothesis that the patient is diseased (Φ=1), and low 697 

(5%) under no-disease (Φ=0), the very low prior p(Φ=1) = 0.01 due to the rarity of the disease 698 

renders a low 0.16 posterior p(Φ=1|E) of disease. This may be obtained from eq.     (9     ) noting 699 

that p(E positive) = 0.01×0.95 + 0.99×0.05 (equivalently one can reason that out of 10,000 700 

patients, 100 would have the disease, 95 of whom would test positive; but of the 9,900 who do not 701 

have the disease, 5% or 495 would wrongly test positive, such that only 16% of those testing 702 

positive are actually diseased). This example illustrates that prior information or beliefs can have a 703 

powerful influence on outcomes, a point that has been emphasized in the context of inferring ECS 704 

from the historical record (see Bindoff et al., 2013; Lewis, 2014). 705 

 706 

While the above example is based on discrete (binary) Φ, in this assessment all variables are 707 

continuous. Hence probabilities are expressed as densities or continuous distributions in a real 708 
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space. To illustrate this case, consider that one has a thermometer with a Gaussian-distributed 709 

error of standard deviation 2℃, and measures the temperature T of some fresh water and obtains 710 

1.5℃. Now since we know the water is liquid, the temperature must a priori lie between 0–100℃. If 711 

our prior p(T) is uniform (all unit intervals of Celsius temperature equally likely) within that range 712 

and zero outside, our likelihood p(obs | T) is normally distributed about 1.5℃, but the posterior PDF 713 

is truncated with no weight on negative temperatures. Thus the maximum-likelihood temperature 714 

(the one most consistent with the evidence) is 1.5℃—but the expectation value (the mean of the 715 

PDF, or the average true temperature if this situation occurred many times) is higher at 2.27℃. 716 

One could also imagine a highly non-uniform prior within 0–100℃, for instance if the water were 717 

known to be in the Arctic region. In this case T would be highly likely a priori to be near the freezing 718 

point, and its expectation value given the measurement might even be lower than the 719 

measurement. Other priors could also be possible, based on analogous past experience or any 720 

other line of reasoning. 721 

 722 

The role of multiple lines of evidence, important for our assessment, is also clarified by a Bayesian 723 

approach. If, in the above example, we had two independent measurements with the same 724 

Gaussian uncertainty each returning 1.5℃, we would multiply the two likelihoods and renormalize, 725 

obtaining a new likelihood with a standard deviation of 1.4℃ (which could be combined with the 726 

same prior to get a new PDF). This independence assumption would be justified if the second 727 

observation came from a different technology, for example infrared radiometry. But if it came from 728 

the same thermometer used again, we would expect the same error both times and the new 729 

likelihood and PDF would be unchanged. If the second observation came from another 730 

thermometer by the same manufacturer, we would have to delve into the reasons for thermometer 731 

error to decide how independent we expect the two measurements to be. These issues are highly 732 

relevant to this assessment and are discussed in section 6. 733 

 734 

The final generalization required is that our problem is multivariate. In section 2.4.2 we describe in 735 

more detail the multivariate problem solved in this assessment. 736 

 737 

2.4.2 Description of methods and calculations.  738 

Following eq. (     9     ) the most general approach for a multivariate system, after specifying a 739 

prior, would be to calculate the likelihood of the entirety of evidence E, as a function of the full set 740 

of model variables Φ (of which there are 15 if we treat six distinct feedbacks, λ, ∆F2xCO2, S, and 741 

three pairs of ∆T and ∆F—one historical and two paleoclimate—see sections 3 and 5). Calculating 742 

a 15-dimensional likelihood function in this way is computationally inefficient, and moreover is not 743 

very helpful conceptually. Fortunately we can simplify and better understand the problem by 744 

considering more carefully the relationships between variables. 745 

 746 

These relationships are illustrated graphically in Fig.      2, separated into three broad lines of 747 

evidence. All quantities in eqs. (     3-     5) are unknown (random) variables characterized by 748 

PDFs, shown as circles in this figure. So the only things “known” before priors are placed on the 749 

variables are the evidence (shown by boxes); the equations linking the variables; and the 750 

relationships between these variables and the evidence. Note that while many previous ECS 751 

studies have taken ∆F2xCO2 as a known constant, we consider it as uncertain, and therefore λ and S 752 

are not uniquely related—though in practice the uncertainty in ∆F2xCO2 is relatively small and λ and 753 

S are nearly reciprocal. 754 

 755 
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Fig. 2 shows the dependence in the inference model, in which individual feedbacks combine to 756 

determine λ, which then determines (together with ∆F2xCO2) S and (together with forcings) the 757 

magnitude of forced responses. The arrows indicate direct causality, where a (“child”) node value 758 

is determined by the (“parent”) variables upstream that point to it. This has strict implications for 759 

the conditional independence of variables inherent in the joint distribution p(Φ)—most importantly, 760 

that any variable is conditionally independent of all others that are not its descendants, given its 761 

parents (see e.g., Pearl 1988). The Bayesian inference process can work backward, where 762 

information on a child tells us about its parent(s), and information from multiple children is 763 

independent if there are no direct links in the diagram between the children.  764 

 765 

A first simplification therefore is that the evidence consists of a set of components (boxes in Fig.      766 

2) which we suppose to be conditionally independent given Φ. In general we suppose the 767 

remaining uncertainties in E, once Φ is known, arise from instrumental and other errors that are 768 

unrelated between lines of evidence; possible violations of independence will be revisited later in 769 

the assessment. The likelihood components can be collected into lines of evidence (for example 770 

the three shown by colors in Fig.      2) and, based on this independence ansatz, the likelihood of 771 

all evidence E can be written: 772 

 773 

  p(E | Φ) = p(Eproc|Φ)p(Ehist|Φ)p(Epaleo|Φ),     (     11) 774 

 775 

where p(Eproc|Φ) is termed the “process likelihood,” which isolates the impact of process evidence, 776 

and so on for the other two.  The multivariate PDF of Φ follows from inserting eqs. (     11) into (     777 

9); to obtain the marginal posterior PDF of S, p(S | E) (or any other particular variable) would 778 

require integrating that multivariate PDF over all variables in Φ other than S. 779 

 780 

A further simplification however is that in our inference model, each evidence line directly depends 781 

only on the most immediate model variable(s), not the entire Φ.  For example, once λ and historical 782 

∆F are specified, the historical warming ∆T does not depend on paleoclimate changes or individual 783 

feedbacks, a further statement of conditional independence.  This means that the historical 784 

likelihood p(Ehist|Φ) can be written as a function of λ and ∆F2xCO2 alone, e.g., p(Ehist|λ,∆F2xCO2). The 785 

same can be done for the paleo evidence. This motivates an expression analogous to eq. (     9     786 

) for the total likelihood or PDF of just the variables of interest, λ or S, which we develop here for 787 

better understanding of the approach. 788 

 789 

It is not possible however to simplify the entire process likelihood in a similar way to the historical 790 

and paleo likelihoods as above.  This is because the primary part of this evidence consists of 791 

multiple pieces Ei pertaining to individual feedbacks i, and these cannot be written as a function of 792 

λ; hence we cannot directly write p(Eproc|λ,∆F2xCO2). Each Ei can however be written as a function of 793 

its parent feedback value λi alone which is again a great simplification. These feedback values are 794 

the independent variables in our inference model (those with no parent variables). Starting from 795 

these, the PDF of each feedback, given its direct evidence Ei only, is  796 

 797 

  p(λi | Ei) = p(Ei | λi) p(λi) / p(Ei).      (     12) 798 

 799 

where p(λi) is a prior PDF for λi. The posterior PDF of the total λ given all individual-feedback 800 

evidence Ei is an integral over these component feedbacks: 801 

 802 

  p(λ | Ei, …,En) ∝ ∫ ∏ p(λi | Ei) δ(λ−Σλi) dλ1dλ2…dλn    (     13) 803 

 804 
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where hereafter, for clarity, we omit normalization constants. In the special case of Gaussian 805 

distributions, which result from the priors and likelihoods employed in section 3, this integral 806 

produces another Gaussian whose mean and variance are simply the sums of those of the 807 

components (see e.g., Ross 2019). 808 

 809 

There is additional process evidence Eλ, from “emergent constraint” approaches, that depends on 810 

the total λ; i.e., Eproc = {Ei, …,En, Eλ}. The PDF of λ given all process evidence, if both types are 811 

independent, is the product of the component-derived PDF (eq.      13) and the likelihood of this 812 

additional evidence: 813 

 814 

  p(λ | Eproc) ∝ p(λ | Ei, …,En) p(Eλ | λ).     (     14) 815 

 816 

(However in part because of dependence concerns, this evidence is only used in a sensitivity test, 817 

see section 3). The historical and paleo evidence depends on λ and ∆F2xCO2 (denoted F in eqs. (     818 

15–17) for brevity).  We assume (see section 3.4) that λ and F are independent a priori, so that  819 

 820 

p(λ,F | Eproc) = p(λ | Eproc) p(F).      (     15) 821 

 822 

This can be combined with the other lines of evidence to yield: 823 

 824 

  p(λ,F | E) ∝ p(λ,F | Eproc) p(Ehist | λ,F) p(Epaleo | λ,F).   (     16) 825 

 826 

Integrating eq. (     16) over F yields a marginal PDF of λ.  Also, using eq. (     4), the marginal PDF 827 

of S could be obtained by integrating over λ and F: 828 

 829 

  p(S | E) ∝ ∫ p(F’) p(λ’,F’|E) δ(S−F’/λ’) (∂S/∂F)−1(∂S/∂λ)−1dF’dλ’ (     17) 830 

 831 

where primes denote integration variables. In practice, ∆F2xCO2  contributes very little to the 832 

uncertainty in historical or paleo forcings, and therefore plays a weak role in those likelihoods.  If 833 

the interdependence among likelihoods arising from this small role is neglected, the above 834 

integrals over ∆F2xCO2  could be performed separately for each line of evidence rather than over the 835 

entirety, yielding eq. (     10) given earlier or an equivalent equation for S. Note that calculations 836 

shown in this assessment do not make this approximation. Equation (     10) or its S equivalent 837 

resemble the basic equation used in past ECS studies on the historical and/or paleo records, 838 

except that the process PDF p(λ | Eproc) or p(S | Eproc) takes the place usually occupied by the prior 839 

on ECS or λ.  840 

 841 

So far eq. (     16) shows likelihoods for historical and paleo evidence only.  The process PDF (eq.      842 

14) can be written as the product of a process marginal likelihood p(Eproc | λ) and a prior predictive 843 

distribution (PPD), p(λ), which is the prior PDF on λ induced by those placed on the independent 844 

variables upstream. An analogous product can be written for S.  Either PPD can be calculated from 845 

eqs. (     12–17) by setting the likelihoods to unity, since it is just the predicted distribution of λ and 846 

S with no evidence. The marginal process likelihood is then the ratio of the process PDF to this 847 

PPD. Calculating this likelihood thus requires integrating over all possible combinations of the λi 848 

(i.e., their joint distribution) weighted by their prior probabilities. This is because an individual 849 

feedback value/evidence Ei cannot be predicted from the sum λ alone; its likelihood of occurrence 850 

for a given total depends on the probabilities (hence priors) of all of the feedbacks. Hence the 851 

marginal process likelihood vs. λ or S is not independent of the prior the way the other likelihoods 852 



  

19 
 

   

are: it changes each time the prior is changed. 853 

 854 

There is in general no closed form solution to eqs. (     13–17) and therefore we use a Monte Carlo 855 

sampling approach to compute the solution. This is described further in section 2.4.4.  This 856 

approach is fully consistent with eqs. (     13–17) but approaches the problem more directly via eq. 857 

(     11). 858 

 859 

2.4.3 Specification of priors and novel aspects of our approach 860 

 861 

As mentioned in section 2.3, prior PDFs must be placed on all independent variables, and are 862 

propagated to the dependent variables (such as λ and S) via the model equations. For each of the 863 

independent variables except the λi, the prior PDF is specified by expert judgment using the 864 

available evidence about that quantity, without considering any other lines of evidence. These 865 

expert priors are given in the appropriate sections and are crucial in determining the historical and 866 

paleo likelihoods. Note that PDFs of these and other variables change once all the evidence is 867 

propagated through the model.  For example, if historical warming turns out to be weaker than 868 

would be expected based on the other lines of evidence, then our posterior PDF of S shifts 869 

downward from what it would have been with only the other evidence—but at the same time, our 870 

posterior PDF of the historical ∆F also shifts downward relative to what we expected a priori. 871 

These revised, posterior PDFs will not be presented except those of S and the historical forcing 872 

∆F. 873 

 874 

Many previous studies have used past climate changes to constrain climate sensitivity using 875 

Bayesian methods (e.g., Aldrin et al., 2012; Johannsen et al., 2015; 2018, Skeie et al., 2014; 876 

2018), and so had to specify priors.  Such studies mostly aimed to constrain S without 877 

incorporating the process knowledge exploited here, instead fitting inference models formulated 878 

with S or λ as an independent variable. As such, they required prior PDFs for S (which were 879 

typically uniform in S or peaked at S values somewhere within the 1.5-4.5 K range). Due to the use 880 

of a different inference model, the prior on S in this assessment is nominally based on less 881 

information and hence not fully equivalent to those in the past Bayesian ECS studies. This and 882 

other issues of how to interpret the priors are taken up in section 7.2. 883 

 884 

2.4.4 Calculation of likelihoods and sampling method 885 

 886 

Implementation of the Bayesian updating generally follows the principles described in Liu (2004), in 887 

which we sample from our prior over Φ and weight each instance in the sample according to the 888 

likelihood P(E|Φ). The weighted ensemble is then an approximation to the posterior PDF, and can 889 

be analyzed and presented as desired (e.g., in terms of the mean/expectation and credible 890 

intervals) via relationships such as expectation E[Φ|E] = Σ(wj Φj) / Σ(wj) where Σ denotes a sum 891 

over all instances Φj from  Φ and wj  is the weight. This approach can also be viewed as a specific 892 

form of Importance Sampling (Gelman et al., 2013) in which the prior is used as an initial ‘proposal’ 893 

distribution from which samples are drawn and subsequently weighted to estimate the target 894 

distribution. 895 

 896 

To create the sample, we begin by sampling the independent variables according to their priors 897 

(e.g., uniform sample distribution for a uniform prior), and then use the inference model equations 898 
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to calculate the values of each dependent variable (such as S) and the model outputs for each 899 

instance in the sample.  This yields a sample population approximating the PPD for all variables in 900 

Φ. Next, a weight wj for each instance j is computed from the global likelihood function (which is a 901 

product of local likelihoods, cf. eq. (     11).  Finally, the posterior PDF is approximated by the 902 

histogram of the weighted sample (see below).  903 

 904 

For the individual-feedback process evidence (see section 3), the likelihood for each feedback 905 

component i is represented as a Gaussian function with mean μi and standard deviation σi. Each 906 

sample instance j is accordingly given a likelihood weight for λij equal to G(λij, μi, σi) where λij is the 907 

ith feedback value of the jth instance in the sample, and G(x,μ,σ) is defined as the Gaussian N(μ,σ) 908 

function evaluated at x. The weights for the six feedbacks are multiplied to give the total likelihood 909 

weight for the individual-feedback evidence. In the baseline case with a prior uniform in λi, the 910 

posterior after updating by this likelihood thus approximates the anticipated Gaussian N(μi,σi), 911 

although we do not explicitly take advantage of this relationship within the algorithm, in order to 912 

allow full generality. Similarly, an “emergent constraint” likelihood is specified in terms of a 913 

Gaussian in total λ, evaluated G(λj, μλ, σλ). 914 

 915 

For the observed temperature change evidence (see sections 4 and 5), we consider a forward 916 

model in the basic form (cf. eq.      3): 917 

 918 

ΔT= f(Φ’)       919 

     920 

where the predicted temperature change ΔT is a function of the other model variables Φ’. The 921 

observed temperature change ΔTobs, which includes an uncertainty σe due to measurement error 922 

and unforced variability, is interpreted as giving rise to a likelihood which takes the Gaussian form  923 

N(ΔT, σe) (Annan and Hargreaves, 2020). Thus the likelihood assigned to any Φ’ is G(ΔT, ΔTobs, 924 

σe), which is the probability of the observed warming for a given ΔT=f(Φ’).  This value is maximized 925 

when ΔT is equal to ΔTobs and drops off rapidly as the difference between ΔT and ΔTobs becomes 926 

large compared to σe. The exact forward models used will differ from (     3) due to additional terms 927 

as previously mentioned, and are given in sections 4 and 5. 928 

 929 

Likelihood weights for process (excluding emergent-constraint), emergent-constraint, historical, 930 

and paleoclimate evidence (separately for cold and warm periods) are calculated for each 931 

instance.  These weights (or a subset thereof) are then multiplied together to give a single 932 

likelihood weight w for each member of the sample. 933 

 934 

The posterior PDF for Φ can be calculated from the weighted sample distribution; marginal PDFs 935 

for variable subsets are calculated from the marginal sample distributions.  For example, a 936 

posterior PDF for S is calculated as the histogram of S in the sample (i.e, the PPD), weighted by 937 

the corresponding likelihood weights—i.e., p(S | E) ∝ Σj∈Q wj, where the set Q contains all 938 

instances j whose Sj falls within a histogram bin centered on S—with normalization.  Posterior 939 

PDFs for any other variable in Φ are calculated similarly. The marginal likelihood function for any 940 

variable (e.g., S) is just the average weight w from the same histogram. Hence the marginal 941 

likelihood is equal to the PDF divided by the PPD. 942 

 943 

Various approximations are made in the sampling calculations to make them less computationally 944 

expensive. The Baseline calculation initially samples each feedback component uniformly and 945 

independently over the range U(–10,10) (see Figure 7.2). We also use an alternative prior which is 946 

calculated by weighting samples from the Baseline prior to give a PPD for S which is uniform from 947 
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near zero to 20 K. This does not include zero because the Baseline prior covers a finite range U(–948 

10,10). When calculating the posterior, to avoid wasted computational effort, we restrict the initial 949 

sample to absolute values for each feedback λi within a six standard-deviation range of the 950 

likelihood function for that feedback. This does not affect the posterior PDF because the likelihood 951 

is effectively zero outside this range.  The posterior calculation in section 7.2 with a uniform-S PPD 952 

uses a weighted version of an equivalent sample (and so also makes this approximation). This 953 

approximation enabled us to to produce stable 5-95% ranges with a Monte Carlo sample size of 954 

2x1010. We also used kernel smoothing to produce satisfactorily smooth posterior PDFs.  (We 955 

applied a Gaussian kernel smoother to the posterior PDFs with a standard deviation of 0.1 K, and 956 

found that this affected the 5-95% ranges by at most 0.02 K). Since in the Baseline calculation the 957 

feedback evidence yields a process PDF which is Gaussian in λ (cf. eqs.      13,      14), this can 958 

be reused as a feedback-based prior on total lambda and combined with the prior on ∆F2xCO2 via (     959 

15) and the downstream likelihoods via eqs. (     14,      16), thus avoiding the need to sample from 960 

a prior on the λi feedbacks each time the calculation is repeated. This more streamlined calculation 961 

requires only a 2x108  sample size and is used as the baseline for most of the sensitivity tests with 962 

a uniform-λ prior in section 7. In calculations that use a uniform-S prior and omit process evidence 963 

(in sections 4 and 7), we speed up the calculations by sampling from uniform independent 964 

distributions for S and ∆F2xCO2, calculating λ from eq. (     4).  965 
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 966 

3. Constraints from Process 967 

Understanding 968 

 969 

3.1   Introductory concepts 970 

 971 

From equation (     4), climate sensitivity is the amount of surface temperature increase necessary 972 

to induce a radiative response ∆R whose energy loss to space cancels the energy trapped by a 973 

CO2 doubling (the CO2’s radiative forcing ∆F2xCO2). The radiative response ∆R is achieved through 974 

changes in the various climate system constituents that influence Earth’s radiation balance. The 975 

goals of “Process” research into climate sensitivity are to determine (a) the magnitude of CO2 976 

radiative forcing, and (b) the mix of changes in various climate system constituents that produces 977 

the necessary radiative response ∆R. The responses of these constituents to warming are termed 978 

feedback. The constituents, including atmospheric temperature, water vapor, clouds, and surface 979 

ice and snow, are controlled by processes such as radiation, turbulence, condensation, and others. 980 

The CO2 radiative forcing and climate feedback may also depend on chemical and biological 981 

processes. 982 

 983 

3.1.1  Definitions of CO2 radiative forcing and climate feedbacks 984 

CO2 radiative forcing ∆F2xCO2, with units W m–2, includes both the direct radiative impact of doubling 985 

of atmospheric CO2 and the indirect radiative impacts arising from adjustments of the atmosphere 986 

and surface that happen without the surface temperature T having appreciably risen.  987 

For climate feedbacks, we expand upon eq. (     5) to express the total climate feedback parameter 988 

λ, with units W m–2 K–1, as the sum of the sensitivities of TOA radiation to factors xi multiplied by 989 

how those factors xi change with surface warming:    990 

𝜆 =  ∑   
𝑖 𝜆𝑖   =  ∑   

𝑖
𝜕𝑁

𝜕𝑥𝑖

𝑑𝑥𝑖

𝜕𝑇
 =  𝜆𝑃𝑙𝑎𝑛𝑐𝑘 + 𝜆𝑤𝑎𝑡𝑒𝑟 𝑣𝑎𝑝𝑜𝑟 + 𝜆𝑙𝑎𝑝𝑠𝑒 𝑟𝑎𝑡𝑒 + 𝜆𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 𝜆𝑐𝑙𝑜𝑢𝑑𝑠 + 𝜆𝑜𝑡ℎ𝑒𝑟  (18     ) 991 

where xi conventionally includes the changes in temperature (Planck), water vapor, lapse rate, 992 

surface albedo and clouds. Each of the terms on the right-hand side of eq. (18     ) is known as a 993 

“feedback”, for example, the Planck feedback, water vapor feedback, lapse rate feedback, etc. 994 

Since ∆F2xCO2 is defined per a prescribed atmospheric CO2 concentration, carbon cycle feedback 995 

on CO2 is excluded here. However, we also consider feedbacks 𝜆𝑜𝑡ℎ𝑒𝑟      from other changes in 996 

atmospheric composition such as those associated with atmospheric ozone and aerosol-cloud 997 

interactions and from changes in stratospheric temperature and water vapor not normally 998 

quantified. Readers interested in this conventional forcing-feedback theory may consult Hansen et 999 

al. (1984), Dessler and Zelinka (2015), Sherwood et al. (2015), and Hartmann (2016). 1000 
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3.1.2  Lines of evidence for process understanding  1001 

Process evidence focuses on the current climate and its internal variability, excluding evidence 1002 

considered in the historical and paleoclimatic sections (section 4 and 5, respectively). There are 1003 

four primary sources for process evidence for S,∆F2xCO2 and climate feedbacks: 1004 

● Global Climate Models (GCMs). Their strength is that they are a globally complete 1005 

representation of the climate system approximately satisfying known conservation laws of 1006 

energy, mass, and momentum. They can be used to estimate feedback and forcing from 1007 

idealized experiments, such as the simulation following an abrupt quadrupling of CO2 or an 1008 

atmosphere-model-only integration with quadrupled CO2 but fixed sea surface temperature 1009 

(SST) and sea-ice. One weakness is that they account for sub-grid processes, particularly 1010 

of clouds and convection, with approximate parameterizations whose varying 1011 

representations contribute to a large inter-model spread in the cloud feedback. Archives of 1012 

many GCM simulations, particularly those collected for the Coupled Model Inter-1013 

comparison Projects (CMIP, Meehl et al., 2005; Taylor et al., 2012; Eyring et al., 2016), 1014 

have been used to determine the robust and non-robust aspects of GCM-simulated CO2 1015 

forcing and feedbacks. 1016 

 1017 

● Observations. Short-term responses at global and regional scales can be quantified from 1018 

satellite observations of the covariation of TOA radiation with temperature, particularly from 1019 

inter-annual variability. These observable responses likely differ from those associated with 1020 

CO2-induced long-term warming, creating uncertainty as to the interpretation of short-term 1021 

feedback-like responses. GCMs can be used to test the correspondence between short-1022 

term responses and the longer-term ones determining λ and S. 1023 

 1024 

● Process-resolving models. High-resolution atmospheric simulations, such as “large-eddy 1025 

simulations” (LES), explicitly calculate the turbulence associated with clouds. These models 1026 

have increasingly been used to understand cloud feedbacks, primarily for tropical marine 1027 

low-level clouds, by forcing them with the environmental changes associated with climate 1028 

warming. Their simulated cloud responses are likely more realistic than those of GCMs 1029 

because LES resolves the main cloud-forming motions which GCMs must parameterize. 1030 

LES does however still contain parameterizations of cloud microphysics and the motions 1031 

that are smaller than the resolution of their grids, which is typically ~10 m for boundary 1032 

layer clouds or ~100 m for deep convection clouds. LES also cannot simulate all important 1033 

cloud conditions, must be forced by uncertain environmental changes from GCMs     , and 1034 

for the case of boundary layer clouds, may be missing the effects of mesoscale motions 1035 

occurring at scales larger than their domain size.  A very different type of process model 1036 

used to estimate the clear-sky direct component of ∆F2xCO2, is the observationally-verified 1037 

line-by-line radiative transfer model, which is more accurate than the radiative transfer 1038 

models used in GCMs. 1039 

  1040 

● Theory. Although limited in precision, theory can provide critical assurance regarding 1041 

feedbacks inferred from the other sources. For example, basic thermodynamics supports 1042 

the lapse rate and water-vapor feedbacks. Also, the understanding that tropical 1043 

tropospheric overturning circulations are governed by the balance between subsidence 1044 

warming and clear-sky radiative cooling underlies the fixed-anvil temperature hypothesis 1045 

relating to the high-cloud altitude feedback.  1046 
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A new type of reasoning called Emergent Constraints arises by combining two of these primary 1047 

sources—GCMs and observations (Hall et al., 2019). Emergent constraints are empirical 1048 

relationships between a present-day climate system variable and a future climate change that 1049 

emerge in an ensemble of simulations by structurally-diverse GCMs. (More generally, emergent 1050 

constraints also exist using variables from other periods in the past but these are not discussed in 1051 

this section.) If the constraint is valid,      one may infer a more likely estimate of the future change 1052 

when given an observation of the present-day variable. Using emergent constraints in this way can 1053 

be viewed as a kind of model weighting. Confidence in this inference depends on the strength of 1054 

the present-to-future relationship, the relative observational uncertainty of the present-day variable, 1055 

and how well the relationship is understood. Emergent constraints exist for S as well as individual 1056 

feedbacks, and are used to inform our assessment.  1057 

3.1.3  Methodology for assessing process understanding  1058 

As discussed in section 2.4, we use two approaches to assess the constraints on S. We do not 1059 

assess S directly, but rather assess ∆F2xCO2, λ and λi, which are related to S via eqs. (     4) and (18     1060 

). 1061 

In the primary approach, we use all sources of evidence to determine a prior for ∆F2xCO2 (section 1062 

3.2.1) and likelihood functions for each individual feedback component λi in eq. (18     ). Consistent 1063 

with our target definition of S, we characterize the feedbacks λi acting over the 150 years following 1064 

an increase of CO2. The relatively certain Planck, water vapor, lapse rate, surface albedo, and 1065 

other feedbacks are assessed in sections 3.2.2-3.2.5, and in section 3.3 we assess the cloud 1066 

feedback which is much more uncertain than the other feedbacks. For the cloud feedback we 1067 

assume that the total cloud feedback is a linear sum of feedbacks from individual cloud types, each 1068 

of which we consider separately. Such an approach is necessary to fully exploit our current 1069 

understanding, much of which pertains to specific cloud types. In section 3.4, we combine the 1070 

results from individual feedbacks to derive PDFs for the total cloud feedback and total climate 1071 

feedback parameter λ. Finally, in section 3.5 we examine observations of global inter-annual 1072 

radiation variability to address the concern that we might have missed some important feedbacks 1073 

through our method of combining individual feedbacks.  1074 

In the secondary approach, we consider emergent constraints that have been used to directly infer 1075 

S based upon the relationships between S and present-day climate system variables exhibited in 1076 

GCM ensembles. This evidence is given its own distinct likelihood function in section 3.6, where 1077 

we also discuss the relative independence of this evidence from that used in the primary approach 1078 

and why greater caution in the use of this evidence is required.  1079 

A summary of all assessed process understanding of S then follows in section 3.7. 1080 

3.1.4  Further considerations 1081 

Both approaches are consistent with the effective climate sensitivity S definition used (section 2.1). 1082 

Thus, when considered, GCM feedback estimates are generally calculated from the linear 1083 

regression of associated anomalies on global mean surface air temperature during the first 150 1084 

years of the abrupt 4xCO2 experiment simulations. One problem with this approach is that GCM 1085 

feedback estimates calculated in this manner when combined with a CO2 forcing that uses surface 1086 

albedo and tropospheric adjustments from fixed-SST GCM experiments (section 3.2.1) would 1087 

overestimate our target definition of S by ~15%. (This is because the CO2 forcing estimated from 1088 

fixed-SST experiments is ~15% larger than that estimated via ordinary linear regression from 1089 
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abrupt 4xCO2 experiments.). However, because this error only affects feedback estimates from 1090 

GCMs and not the feedback estimates from theory, LES or observations of inter-annual variability, 1091 

the overall impact on the feedback values estimated with the primary approach would be much 1092 

less (< 5%) and is accordingly neglected.  1093 

Mathematically, Gaussian likelihoods are assigned for each individual feedback component λi. This 1094 

means that we assume that the likelihood is a Gaussian function of the variable being assessed, 1095 

requiring that we specify two parameters—the mean and standard deviation. Note that if a 1096 

Gaussian likelihood function is applied to a variable with a broad (e.g., uniform) prior PDF in that 1097 

variable, the implied posterior PDF will also be Gaussian with the same mean and standard 1098 

deviation. Broad priors are appropriate for feedback components for which we do not have an a 1099 

priori expectation of their value, and which can be positive or negative (our Baseline prior case). 1100 

Hence, the likelihood functions for λi determined below can be considered equivalent to PDFs for 1101 

this case. 1102 

 1103 

3.2   Process understanding of CO2 radiative forcing and 1104 

non-cloud feedbacks 1105 

 1106 

3.2.1  CO2 radiative forcing 1107 

 1108 

Increases in CO2 lead, all other things unchanged, to a decrease in longwave (LW) emission to 1109 

space (i.e., the CO2 “greenhouse effect”). This instantaneous radiative forcing for a doubling of 1110 

CO2 can be obtained from very accurate line-by-line radiative transfer models (Collins et al., 2006, 1111 

Pincus et al., 2015, Etminan et al., 2016); these are in very good agreement and provide a global-1112 

mean estimate of 2.9 W m–2 at the TOA (Figure 3     ). The instantaneous CO2 radiative forcing 1113 

varies with location due to variations in temperature, water vapor, clouds, and tropopause position 1114 

(Huang et al., 2016a).  The traditionally-defined forcing also includes a contribution from the 1115 

perturbed stratosphere because the stratosphere is dynamically isolated from the surface (Hansen 1116 

et al., 1981). Within a few months, the stratosphere cools in response to increased CO2 causing an 1117 

additional reduction in the emission to space of LW radiation. This “stratospheric adjustment” is 1118 

well-understood and is estimated to add 0.9 W m–2 at the TOA (Figure 3     ).  1119 

 1120 

Using an updated line-by-line radiative transfer model that also includes the shortwave absorption 1121 

bands of CO2 as well as the spectral overlap with N2O absorption bands, Etminan et al. (2016) 1122 

estimate the sum of the instantaneous radiative forcing and the stratospheric adjustment, often 1123 

called the stratospheric-adjusted radiative forcing (SARF), to be 3.8 W m–2 for a doubling of CO2, 1124 

using the equation in their Table 1. They also show that the radiative forcing increases slightly 1125 

more than logarithmically with CO2 concentration. The 5-95% percentile uncertainty range for the 1126 

SARF is estimated to be ±10% (i.e., ±0.38 W m–2), with major components of the uncertainty due 1127 

to the radiative transfer code, the method of calculating the stratospheric adjustment, and the 1128 

specification of temperature, clouds, and tropopause position (Hodnebrog et al., 2013; Etminan et 1129 

al., 2016). Uncertainties due to spectroscopic data themselves are considered to be much smaller 1130 

(< 1%) (Mlynczak et al., 2016).  1131 

  1132 
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Components of the surface and troposphere also adjust in response to the increase in CO2, 1133 

independent of the rise in surface temperature (Gregory and Webb 2008; Boucher et al., 2013). 1134 

They are fundamentally the same as the stratospheric adjustment in a sense that they occur 1135 

rapidly to modulate the TOA radiative flux (Sherwood et al., 2015), but their estimates are 1136 

methodologically distinct as currently these tropospheric and surface adjustments can be 1137 

estimated globally only from GCMs (Vial et al., 2013; Zhang and Huang, 2013; Smith et al., 2018). 1138 

Clouds are one component with reductions of low and middle-level clouds producing a positive 1139 

radiative adjustment of ~0.4 W m–2 (Andrews et al., 2012b, Kamae et al., 2015, Sherwood et al., 1140 

2015, Smith et al., 2018). Several mechanisms for these cloud reductions have been identified. 1141 

First, the increase in CO2 causes the vertical profile of radiative cooling to shift to higher levels. 1142 

This results in less radiative cooling at low levels, a shoaling of the marine boundary layer, and a 1143 

reduction of low clouds (Kamae and Watanabe 2013). LES also simulates boundary layer shoaling 1144 

and low cloud reductions (Bretherton et al., 2013, Bretherton and Blossey, 2014, Blossey et al., 1145 

2016), lending credence to the GCM results. Second, the increase in CO2 also causes a reduction 1146 

in the vertically-integrated tropospheric radiative cooling, which reduces the strength of the overall 1147 

hydrologic cycle and hence the overall amount of cloud produced (Dinh and Fueglistaler, 2020). 1148 

Finally, plant physiological processes cause the stomatal resistance to increase with increasing 1149 

CO2 (Doutriaux-Boucher et al., 2009). The resulting reduction in surface evaporation and 1150 

concomitant increase in sensible heat flux to the atmospheric boundary layer dries and warms the 1151 

near surface air. This reduces the low-level relative humidity and clouds over land (Arellano et al., 1152 

2012, Andrews and Ringer, 2014). 1153 

  1154 

Other adjustments include negative ones from increased LW emission to space from a warmer 1155 

troposphere and increased land-surface temperatures, and positive ones from increased water 1156 

vapor and reduced surface albedo (Figure 3     ; Andrews et al., 2012b; Kamae and Watanabe 1157 

2012; Vial et al., 2013; Smith et al., 2018). The increase in land-surface temperature in these GCM 1158 

experiments results from the increase in surface downward LW radiation (itself the direct 1159 

consequence of the increased CO2 concentration), and happens despite the simulations being 1160 

performed with fixed SSTs. The land surface warming slightly increases the global-mean surface 1161 

temperature, and its inclusion would be inconsistent with a definition of radiative forcing which 1162 

counts only those adjustments that occur without change in the global-mean surface temperature. 1163 

Thus, we exclude the land-surface warming component, yielding a total of +0.2 W m–2 as the sum 1164 

of surface albedo and tropospheric adjustments, as calculated from the data in Smith et al. (2018). 1165 

(In reality, a portion of the other surface and tropospheric adjustments are the consequence of the 1166 

land-surface warming and also should be excluded. However, current research has not isolated 1167 

the portion of these adjustments that results from the land-surface warming from the portion that 1168 

directly responds to the CO2 concentration.) 1169 

  1170 

The sum of the instantaneous radiative forcing and the stratospheric, tropospheric, and surface 1171 

albedo adjustments is known as the “effective” radiative forcing (ERF) and for a doubling of CO2 1172 

will be denoted with the symbol ∆F2xCO2. From the above arguments and Figure 3     , we estimate 1173 

the Gaussian prior of ∆F2xCO2 to have a mean of 2.9 + 0.9 + 0.2 = 4.0 W m–2. As for uncertainty in 1174 

the ERF, we assign its 5-95% percentile uncertainty range to ±0.5 W m–2, where the increase in 1175 

uncertainty above that of the SARF is attributed to the additional source of uncertainty from the 1176 

surface and tropospheric adjustments (dominated by the clouds) (Smith et al., 2018). Interpreting 1177 

this uncertainty as being Gaussian-distributed, we determine the standard deviation to be 0.3 W m–1178 
2. Altogether, we assess the prior of ∆F2xCO2 to be N(+4.0, 0.3), where we use the notation N(x,y) to 1179 

indicate a Gaussian distribution with mean x and standard deviation y. 1180 

 1181 
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To estimate the CO2 ERF for perturbations other than a doubling, different approaches are used in 1182 

the paper. To estimate a CO2 ERF time series over the historical period, section 4 uses the 1183 

equation for SARF in Table 1 of Etminan et al. (2016) scaled by the ratio of ERF to SARF for CO2 1184 

doubling which is 4.0/3.8 (an increase of 5%). The scaling factor is applied under the assumption 1185 

that the sum of tropospheric and surface albedo adjustments is linearly proportional to the SARF. 1186 

Section 5 follows the same approach and also adjusts the forcing of CH4 and N2O by the same 5% 1187 

factor, based upon the assumption that the adjustments behave similarly for these other well-1188 

mixed greenhouse gases (GHG). 1189 

 1190 

3.2.2  Planck feedback  1191 

 1192 

The Planck feedback represents the extra emission to space of LW radiation arising from a 1193 

vertically uniform warming of the surface and the atmosphere with no change in composition. 1194 

Physical expectation for this feedback is that 𝜆𝑃𝑙𝑎𝑛𝑐𝑘 ≈ −4𝜀𝜎𝑇3 ≈ −3.3 W m–2 K–1 for present-day 1195 

conditions, and the values shown in Figure 4      from GCMs of −3.2 ± 0.04 W m–2 K–1 (1-sigma) 1196 

(Vial et al., 2013; Caldwell et al., 2016; Colman and Hanson, 2017) and those from observations of 1197 

inter-annual variability (Dessler, 2013) are both in general agreement with this physical 1198 

expectation. Uncertainties in modeled 𝜆𝑃𝑙𝑎𝑛𝑐𝑘 arise from differences in the spatial pattern of 1199 

surface warming, and the climatological distributions of clouds and water vapor that determine the 1200 

planetary emissivity (𝜀). In particular, the latter impacts the radiative temperature kernel, which is 1201 

often held fixed in studies of inter model spread, thus leading to slight underestimates of structural 1202 

uncertainty in 𝜆𝑃𝑙𝑎𝑛𝑐𝑘 within individual studies. Accounting for these issues, we assign the 1203 

likelihood function for the Planck feedback to be N(−3.2, 0.1). 1204 

 1205 

3.2.3 Water vapor and lapse rate feedbacks  1206 

 1207 

The water vapor feedback quantifies the change in outgoing LW and absorbed SW radiation at the 1208 

top of the atmosphere due to changes in atmospheric water vapor concentration associated with a 1209 

change in global mean surface temperature. It arises because water vapor absorbs both LW and 1210 

SW radiation and its concentration is expected to increase exponentially with temperature. The 1211 

equilibrium (saturation) concentration increases following fundamental thermodynamic theory of 1212 

the Clausius-Clapeyron relationship. Although concentrations are usually below saturation (relative 1213 

humidity less than 100%), this difference is well understood (Sherwood et al., 2010a) and well 1214 

captured by GCMs with adequate resolution (Sherwood et al., 2010b). Increases in specific 1215 

humidity in response to 1 K of warming at constant relative humidity in the middle and upper 1216 

troposphere result in a greater reduction in outgoing LW radiation than similar increases in the 1217 

lower troposphere due to the masking effects of overlying water vapor and clouds (Soden et al., 1218 

2008; Vial et al., 2013). A given increase in specific humidity generally has a larger impact on LW 1219 

than on SW radiation. GCM simulations and observations of the seasonal cycle, inter-annual 1220 

variability, and climate trends all exhibit relatively small changes in relative humidity with warming, 1221 

and therefore large increases in specific humidity with warming (Dessler and Sherwood, 2009; 1222 

Boucher et al., 2013). The agreement of observations and GCMs with expectations from basic 1223 

thermodynamic theory (Romps, 2014) leads to high confidence in robustly positive water vapor 1224 

feedback. 1225 

 1226 
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The lapse-rate feedback is the change in LW radiation emitted to space resulting from any non-1227 

uniformity of the change in temperature in the vertical. The LW emission to space depends on both 1228 

surface and atmospheric temperatures. The more the atmosphere warms per degree of surface 1229 

warming, the greater the increase in LW emission to space, and hence the greater the LW 1230 

radiative damping of surface warming. Low-latitude warming occurs along a moist adiabat such 1231 

that free-tropospheric warming exceeds that at the surface, causing a negative lapse-rate 1232 

feedback. At higher latitudes with greater stability and reduced coupling between the surface and 1233 

free troposphere, warming is generally largest near the surface, leading to a positive lapse rate 1234 

feedback (Manabe and Wetherald, 1975). Though consistently negative in the global mean, the 1235 

strength of the lapse rate feedback varies among models and between observational estimates.  1236 

 1237 

The impact of the separate uncertainties in these feedbacks on the climate feedback parameter 𝜆 1238 

is limited, however, because GCMs and physical reasoning suggest that these two feedbacks are 1239 

strongly anti-correlated (Zhang et al., 1994; Soden and Held, 2006; Held and Shell, 2012). This is 1240 

fundamentally because radiation to space depends to good approximation on the relative humidity, 1241 

which changes little overall with warming as mentioned above, and the near-surface temperature 1242 

(Ingram, 2010).  Although the anti-correlated spread of the two feedbacks in models was thought 1243 

to arise because models experiencing greater upper tropospheric warming also experience greater 1244 

moistening of the upper troposphere, it is now clear that the varying partitioning of surface warming 1245 

between the tropics and extratropics is responsible. Specifically, models with warming 1246 

concentrated at low latitudes have larger negative extratropical lapse rate feedbacks and stronger 1247 

positive extratropical water vapor feedbacks (Po Chedley et al., 2018). As a result of this anti-1248 

correlation, it is useful to consider the sum of the lapse-rate plus water vapor feedback, which is 1249 

much less uncertain than the individual components. Still there remains structural or 1250 

methodological uncertainty with studies coming up with ensemble mean estimates of 0.9–1.4 W m–1251 
2 K–1 (Figure 4     ), which exceeds the inter-model spread. This could partly be due to the use of 1252 

different radiative kernels, and likely related to shortwave absorption by water vapor (Pincus et al., 1253 

2015). These central estimates are in quantitative agreement, though, with estimates based on 1254 

reanalysis (Dessler, 2013) (Figure 4     ). From this agreement and with consideration of the 1255 

uncertainty in both reanalysis and GCM estimates, we therefore assess the likelihood function for 1256 

the lapse-rate plus water-vapor feedback to be N(+1.15, 0.15). 1257 

 1258 

3.2.4 Surface albedo feedback  1259 

 1260 

The surface albedo feedback mostly arises from warming-induced shrinkage of the cryosphere, 1261 

which exposes less reflective surfaces that absorb more sunlight. It is dominated by snow and sea 1262 

ice at high latitudes. Its strength is determined primarily by how snow and ice vary with global 1263 

mean temperature; the contrast in albedo between frozen and non-frozen surfaces; and the 1264 

shortwave transmissivity of the atmosphere as the photons have to traverse the atmosphere at 1265 

least twice to be reflected to space by the surface. Quantitative estimates from GCMs and 1266 

observations      based on inter-annual variability generally agree, with a feedback value near 0.3 1267 

W m–2 K–1 (Figure 4     ), and GCMs suggest that the feedback value implied by inter-annual 1268 

variability is near that in response to long-term CO2 warming (section 3.5     ). The relevance of 1269 

internal climate variability to global warming is also supported by an emergent constraint from the 1270 

seasonal cycle for the surface albedo feedback which is very strong on Northern Hemisphere land 1271 

and is mostly caused by snow cover changes (Hall and Qu, 2006; Qu et al., 2007, 2014). Early 1272 

attempts to form an emergent constraint on sea ice feedbacks were less encouraging (Crook and 1273 
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Forster, 2014; Colman, 2013), however recent progress has been achieved by taking advantage of 1274 

the seasonal cycle in Arctic sea ice to constrain its contribution to global feedback (Thackeray and 1275 

Hall, 2019). Mostly, this progress arises from a focus on surface albedo feedback in near-term 1276 

global warming, well before Arctic sea ice vanishes. 1277 

 1278 

However, uncertainties can be larger than apparent in these comparisons for various reasons. 1279 

Observed trends in surface albedo for the period 1979 to 2008, driven mostly by Northern 1280 

Hemisphere sea ice loss, suggest a larger value of surface albedo feedback (Flanner et al., 2011; 1281 

Pistone et al., 2014; Cao et al., 2015), although internal decadal variability may also be 1282 

contributing to the diagnosed feedback in this period. Atmospheric transmissivity largely depends 1283 

on liquid or mixed phase clouds in the Arctic summer season, and since many       GCMs fail to 1284 

simulate these clouds (Karlsson and Svensson, 2013; Pithan et al., 2014), GCMs likely 1285 

overestimate the surface albedo feedback. The surface albedo feedback is also state dependent 1286 

such that reduced cryospheric extent      will reduce its magnitude in a warmer climate (Jonko et 1287 

al., 2012; Block and Mauritsen, 2013, Thackeray and Hall, 2019). Separately, some GCMs 1288 

exaggerate snow albedo feedback on land because they do not account for vegetation masking 1289 

(Qu and Hall, 2007, 2014; Thackeray et al., 2018).  1290 

 1291 

Based upon the good agreement between the observed estimate from inter-annual variability and 1292 

the GCM values for both inter-annual variability and long-term warming, we assign a central 1293 

estimate of surface albedo feedback as 0.3 W m–2 K–1. As the just-discussed uncertainties do not 1294 

have a consistent sign, we do not alter the central estimate, but double the quantitative 1295 

uncertainties diagnosed from observations (Dessler, 2013) and GCM inter-model spread. Thus, we 1296 

assess the likelihood function for the surface albedo feedback to be N(+0.3, 0.15).  1297 

 1298 

Apart from the cryosphere, a small positive surface albedo feedback comes from the inundation of 1299 

coastal lands by sea level rise which thus replaces land with a less reflective ocean surface. For 1300 

the Last Glacial Maximum (LGM), the estimated radiative effect is of order 1 W m−2 (Köhler et al., 1301 

2010, see section 5.1). But because sea-level rise realized during 150 years and several K of 1302 

warming would be limited to at most a few meters compared to the LGM change of over 100 1303 

meters, the resulting effective feedback is only of order 0.01 W m−2 K−1. Other surface albedo 1304 

feedbacks can occur as a function of changing precipitation patterns affecting soil moisture, 1305 

vegetation changes in response to moisture and/or temperature changes, and changes in surface 1306 

chlorophyll in response to ocean circulation changes. Calculations suggest that these feedbacks 1307 

are also negligible on global mean temperature, although they can significantly affect regional 1308 

climate changes (Levis et al., 1999). 1309 

 1310 

 1311 

3.2.5 Stratospheric feedback 1312 

 1313 

The feedback estimates shown in Figure 4      do not include those from the response of 1314 

stratospheric temperature and water vapor to climate warming. Banarjee et al. (2019) calculate a 1315 

stratospheric water vapor feedback of +0.15 ± 0.04 W m–2 K–1 (1-sigma) from 27 CMIP5 model 1316 

simulations of the abrupt 4xCO2 experiment, resulting from the robust increase in stratospheric 1317 

water vapor in each model. Climate warming however increases the strength of the Brewer-1318 

Dobson circulation; this forces temperature anomalies that compensate for those induced by water 1319 

vapor, with the result that the net feedback is smaller.  From 11 CMIP5 models, Huang et al. 1320 

(2016b) quantify the total feedback from changes in stratospheric temperature and water vapor to 1321 

be 0.00 ± 0.04 W m–2  K–1 (1-sigma). 1322 
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 1323 

Based upon this study, we assess the likelihood function for this total stratospheric physical 1324 

feedback to be N(+0.0, 0.10), where the increased standard deviation is justified by a lack of 1325 

confidence in the fidelity with which the CMIP5 GCMs used by Huang et al. (2016b) simulate 1326 

stratospheric processes. Increased standard deviation is also justified by the lack of quantitative 1327 

confirmation from observations. However, qualitative observational support for our assessment 1328 

exists. Specifically, observations show that increases in lower stratospheric water vapor in inter-1329 

annual variability are correlated to increases in tropospheric temperature (Dessler et al., 2013) and 1330 

observations support the notion that the Brewer-Dobson circulation has strengthened over the 1331 

most recent four decades (Fu et al., 2015; Fu et al., 2019). 1332 

 1333 

3.2.6 Feedbacks from other atmospheric composition changes 1334 

 1335 

In this assessment we consider well-mixed gases (CO2, CH4, N2O) to be specified forcers, since in 1336 

the modern era, they are effectively under human control. Thus we do not include climate-driven 1337 

variations of these gases (e.g., carbon cycle feedbacks). However, this still leaves several possible 1338 

sources of feedback apart from the traditional ones discussed so far. 1339 

 1340 

One example is ozone, an absorber of both SW and LW radiation whose chemistry responds to 1341 

temperature and temperature-mediated circulation changes. The direct feedback from climate-1342 

driven tropospheric ozone changes appears negligible (Dietmuller et al., 2014). However, the 1343 

indirect effects of ozone changes could be considerable with one study suggesting that interactive 1344 

ozone chemistry induces a substantial negative feedback averaging 0.13 W m–2 K–1 (Nowack et al., 1345 

2015). In their study, the robust strengthening of the Brewer-Dobson circulation in a warmer 1346 

climate causes a reduction of tropical lower-stratospheric ozone, and because this region is 1347 

particularly cold this leads to a reduction of the greenhouse effect. Follow-up studies with other 1348 

models found similar ozone concentration changes, but similar or smaller impacts on the climate 1349 

feedback parameter λ in response to CO2-induced climate change (Marsh et al., 2016; Chiodi and 1350 

Polvani, 2017; Dacie et al., 2019). In contrast, a larger impact has been identified in response to 1351 

solar forcing (Chiodi and Polvani, 2016), and with stronger impacts on atmosphere and ocean 1352 

circulations (Muthers et al., 2016; Chiodi and Polvani, 2017; Nowack et al., 2017). Simulations with 1353 

fully interactive atmospheric chemistry in the GISS CMIP5 models had a ~10% increased S 1354 

compared to non-interactive versions (Schmidt et al, 2014), and this change was influenced in part 1355 

by the ozone changes, but also the direct and indirect aerosol responses to a higher CO2 world. 1356 

 1357 

A warmer climate could also affect the production and/or lifetime of aerosols, in particular, dust, 1358 

sea salt, natural sources of SO2/SO4 and reactive nitrogen species, and natural fires. Besides 1359 

changes to the direct aerosol radiative effect (Paulot et al., 2020), t     his could lead to additional 1360 

indirect aerosol effects on clouds (Gettelman and Sherwood, 2016; Gettelman et al., 2016) and 1361 

fire-induced effects on surface albedo. For example, one recent study showed that the increase in 1362 

Southern Ocean emissions of primary organic matter and gaseous dimethyl sulfide with climate 1363 

warming could impact the climate feedback parameter λ by 0.2 W m−2 K−1  depending on how the 1364 

aerosol change affected cloud droplet number (Bodas-Salcedo et al., 2019). Another recent study 1365 

showed that the increase with warming of sea-salt emissions altered λ by 0.13 W m−2 K−1  (Paulot 1366 

et al., 2020). A review of possible mechanisms (Carslaw et al., 2010) suggested high uncertainty 1367 

but a possible total effect of up to ± 0.2 W m−2 K−1 over the 21st century. A direct CO2 effect to the 1368 
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biophysical change in stomatal conductance over land has been accounted for in many GCMs, 1369 

and has been discussed in section 3.2.1. 1370 

 1371 

In the absence of evidence for a systematic effect, we assess these processes have no expected 1372 

net effect and assign the mean of the likelihood function for 𝜆𝑜𝑡ℎ𝑒𝑟 to zero. For the standard 1373 

deviation, we base our quantitative estimate on the Nowack et al. (2015), Schmidt et al. (2014), 1374 

and Carslaw et al. (2010) studies, and assign a value of 0.15 W m–2 K–1.  1375 

 1376 

3.3   Process understanding of cloud feedbacks 1377 

 1378 

Because both observations and GCMs indicate that the largest uncertainty resides with the cloud 1379 

feedback (Figure 4     ), it has been the main focus of climate feedback research for the past three 1380 

decades. The cloud feedback is particularly difficult since there are diverse cloud formation 1381 

processes, most of which are challenging to represent in GCMs, and we must add up the response 1382 

to warming of all cloud types capable of making a significant radiative contribution.  1383 

 1384 

Given this complexity, it is logical to start by considering the mean and range of GCM simulations 1385 

of both present-day zonal mean cloud fraction and its response to global warming (Figures 5     a-1386 

b), and the corresponding radiative impact (Figures 5     c-e), noting the simulated roles of various 1387 

cloud types. (Note that these GCM cloud feedbacks are presented only to orient the reader for the 1388 

following sections, which will assess specific cloud feedbacks based upon all of the evidence from 1389 

observations, process-resolving models, theory, and GCMs.) 1390 

 1391 

Even though GCMs disagree significantly on the value of the total cloud feedback, at least 80% of 1392 

25 CMIP5 models agree on the direction of change in cloud cover over 80% of the atmosphere 1393 

(see stippling in Figure 5     a). This indicates that GCMs broadly agree on many large-scale 1394 

responses including an upward shift of clouds near the tropopause, a poleward shift of clouds in 1395 

midlatitudes, and a decrease in clouds of 0.5-1% K–1 in most of the troposphere. The inter-model 1396 

standard deviation of cloud fraction response to warming (Figure      5     b) can be considered an 1397 

internal measure of model uncertainty. It tends to be greatest in regions where the multi-model 1398 

mean cloud fraction is large, more so for tropical boundary layer and deep convective clouds. 1399 

 1400 

Figure 5     c shows the corresponding zonally-averaged cloud feedbacks, with a solid line shown 1401 

at latitudes where at least 14 of the 18 GCMs providing the needed data agree on the feedback 1402 

sign. Equatorward of 50° latitude, GCMs robustly predict positive feedback, of which more than 1403 

half is due to low cloud. Most of the positive non-low (i.e., high and middle level) cloud feedback is 1404 

due to cloud altitude shifts (Figure 5     d), whereas most of the positive low cloud feedback is due 1405 

to cloud fraction reductions (Figure 5     e). Negative cloud feedbacks near 60°S are primarily due 1406 

to an increase in cloud optical depth (opacity), particularly in low cloud.  1407 

 1408 

Our level of understanding of the physical processes responsible for these patterns of cloud 1409 

response and radiative feedback varies. We begin with cloud feedbacks that are considered more 1410 

certain (high cloud altitude) or important (tropical low cloud) before discussing less certain 1411 

feedbacks associated with other cloud types. 1412 

 1413 
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3.3.1   High-cloud altitude feedback 1414 

 1415 

The altitude of high-cloud tops is expected to increase with global warming, a response that arises 1416 

from relatively basic physics. Convective mixing in the tropics occurs only at altitude ranges 1417 

experiencing substantial radiative cooling by water vapor (Manabe and Strickler, 1964), which 1418 

expand upward as the atmosphere warms if relative humidity does not change substantially. 1419 

Because anvil clouds form from detrainment near the top of the convecting layer, they too are 1420 

expected to rise with warming, roughly isothermally (Hartmann and Larson, 2002). Because cloud-1421 

top temperature and hence longwave emission to space from high cloud tops does not increase in 1422 

step with the warming atmosphere and surface below, this response impedes the planet’s ability to 1423 

radiate away extra energy—a positive radiative feedback (Yoshimori et al., 2020). This notion can 1424 

be traced back at least as far as Cess (1974), who showed that the empirical relationship between 1425 

temperature and outgoing LW flux (Budyko, 1969) was better explained by cloud top temperature 1426 

rather than altitude staying constant with surface warming. 1427 

 1428 

Observations of inter-annual variability confirm that tropical high clouds rise with surface warming 1429 

(Eitzen et al., 2009; Li et al., 2012; Xu et al., 2005, 2007; Zelinka and Hartmann, 2011; Zhou et al., 1430 

2014, Vaillant de Guélis et al., 2018). Using interannual variability in cloud properties observed by 1431 

CALIPSO over 2008–2014, Vaillant de Guélis et al. (2018) estimate a global mean short-term LW 1432 

cloud altitude feedback of 0.86 ± 0.48 W m–2 K–1 (1-sigma). Scaling this short-term value by the 1433 

ratio of short- to long-term altitude feedbacks in a single GCM computed using the same 1434 

methodology implies a long-term value of 0.35 ± 0.20 W m–2 K–1. Further observational analyses for 1435 

longer periods and examination of the relationship between short- and long-term altitude 1436 

feedbacks in more GCMs are needed. At longer time-scales, the climate-change induced upward 1437 

shift of high clouds is expected to be detectable and distinct from the noise of internal variability 1438 

sooner than for other cloud properties (Chepfer et al., 2014; Marvel et al., 2015). Indeed, 25-year 1439 

trends from artifact-corrected ISCCP and PATMOS-x satellite datasets (Norris and Evan, 2015) 1440 

indicate an upward shift of high clouds, suggesting that this signal may already be emerging from 1441 

the noise (Norris et al., 2016). 1442 

 1443 

An increasing altitude of high clouds with warming has been simulated ever since GCMs began 1444 

predicting cloud distributions (Hansen et al., 1984; Wetherald and Manabe, 1988), and is clearly 1445 

seen in Figure 5     a. All current climate models simulate a positive feedback from increases in the 1446 

altitude of high cloud tops with global warming (Zelinka and Hartmann, 2010; Zelinka et al., 2012b; 1447 

Zelinka et al., 2013). This feedback has a mean and one standard deviation of 0.20 and 0.10 W m–1448 
2 K–1 across all GCMs (including some CMIP6 models) that have provided the necessary 1449 

diagnostics to perform the calculations in Zelinka et al. (2016). The purple curve in Figure 5     d 1450 

shows the multi-model mean latitudinal dependence of this longwave cloud radiative feedback. 1451 

The simulated increase in altitude is a global phenomenon, but its strength is modulated regionally 1452 

by the mean-state high cloud distribution. In model simulations, a slight warming of cloud tops 1453 

occurs rather than the purely isothermal response anticipated by Hartmann and Larson (2002). 1454 

This has been attributed to increases in upper tropospheric stability (Zelinka and Hartmann, 2010; 1455 

Bony et al., 2016), but can be modulated by changes in humidity (Kluft et al., 2019), ozone and 1456 

stratospheric upwelling (Dacie et al., 2019), and additional processes (Seeley et al., 2019b). The 1457 

same principles have been shown to apply in the extratropics, providing support for the positive 1458 

extratropical cloud altitude feedback (Thompson et al., 2017) which GCMs suggest is comparable 1459 

in magnitude to the tropical cloud altitude feedback. Depletion of condensate by mixing with the 1460 

drier environment is also relevant for high cloud coverage and its vertical shifts with warming 1461 
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(Seeley et al., 2019a) but should not affect the basic result that warming increases high cloud 1462 

altitude.  1463 

 1464 

Tropical clouds also shift upward nearly isothermally with warming in cloud resolving models and 1465 

large eddy simulations (Harrop and Hartmann, 2012; Khairoutdinov and Emanuel, 2013; Kuang 1466 

and Hartmann, 2007; Narenpitak et al., 2017; Tompkins and Craig, 1999). Global cloud resolving 1467 

model simulations further support this upward shift, including in the extratropics (Bretherton et al., 1468 

2014; Satoh et al., 2012; Tsushima et al., 2014). The cloud altitude feedback diagnosed in 1469 

Bretherton et al. (2014) falls within the range of conventional GCMs quoted above, providing an 1470 

important confirmation of its sign and magnitude in a model that explicitly simulates cumulus 1471 

convection.  1472 

 1473 

In summary, theoretical, observational, high-resolution modeling and GCM studies all support a 1474 

positive high-cloud altitude feedback. Given that GCMs appear to represent the relevant physics 1475 

and have a mean feedback within the uncertainty estimate of a limited first observational estimate, 1476 

we assess the likelihood function of the high-cloud altitude feedback to be N(+0.20, 0.10), where 1477 

the mean and standard deviation corresponds to that of GCMs. This assumes that GCMs well 1478 

sample the uncertainty in the effective high-cloud amount and the rate at which the high-cloud 1479 

altitude will rise with warming.  1480 

 1481 

3.3.2   Tropical marine low-cloud feedback 1482 

 1483 

Uncertainties in the response to climate change of low-latitude marine boundary-layer clouds 1484 

(cumulus and stratocumulus) in subsiding regions remain a central challenge. The GCM inter-1485 

model spread in the tropical low cloud feedback is large and well correlated with inter-model 1486 

spread in S (Bony and Dufresne, 2005; Vial et al., 2013). However, a combination of process-1487 

resolving modeling and new observational analysis is leading to a better understanding and 1488 

quantification of the most important cloud response mechanisms, leading to increasing confidence 1489 

that this regime contributes to positive global cloud feedback.  1490 

 1491 

The feedback of low clouds is almost exclusively via shortwave radiation because they have a 1492 

small effect on TOA longwave radiation. Figure 5     e shows that most GCMs simulate positive low 1493 

cloud feedbacks throughout low latitudes (30°S-30°N) which are especially strong in the deep 1494 

tropics (10°S-10°N) and are almost exclusively due to reduced cloud amount in a warmer climate. 1495 

As will be discussed in section 3.3.5, GCMs also simulate positive low cloud feedback in 1496 

midlatitudes (30-50° latitude), where the mechanisms controlling low cloud are likely similar but 1497 

quantitatively less well constrained. Despite the general agreement among GCMs in the sign of the 1498 

feedback, the large inter-model spread has motivated major efforts to use other lines of evidence, 1499 

namely process-resolving models and observations, to infer the tropical low cloud feedback. 1500 

 1501 

Bretherton et al. (2015) reviews results from large-eddy simulation (LES) of low-latitude marine 1502 

cloud-topped boundary layers in present-day versus perturbed climates. This work suggests that 1503 

four main mechanisms affect the cloud response on climate timescales. These are: (1) cloud 1504 

reduction due to thermodynamic effects of overall warming of the atmosphere-ocean column, 1505 

including the associated increase in specific humidity, (2) stratocumulus cloud reduction due to the 1506 

direct effect of CO2 increases on boundary-layer radiative cooling, an important process for stirring 1507 

up cloud-forming turbulence (note this contributes to rapid adjustment to CO2 (section 3.2.1), and 1508 
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not the temperature-mediated feedback that we are trying to determine here), (3) increases in the 1509 

stratification between the boundary layer and overlying free troposphere, favoring more cloud, and 1510 

(4) reductions in the mean subsidence rate, which favor more cloud by keeping the cloud layer 1511 

from shoaling. Other possible forcings, such as changes in free-tropospheric relative humidity and 1512 

surface wind speed, may be important for regional cloud response to climate change but seem to 1513 

be secondary to global cloud feedback. LES for the expected global warming environment typically 1514 

predict less low cloud, hence positive cloud feedback. This happens because the warming-induced 1515 

reduction in low cloud (mechanism (1)) overwhelms the increases from the small changes in 1516 

expected stratification and subsidence (mechanisms (3) and (4)). 1517 

 1518 

The cloudy boundary layer responds within hours to days to changes in the overlying atmosphere 1519 

or underlying ocean. Klein et al. (2017) reviews a series of observational analyses that have tried 1520 

to quantify the sensitivity of clouds to each of the ‘cloud controlling factors’ associated with the 1521 

mechanisms above using satellite observations of natural space-time variability on weekly to inter-1522 

annual time scales (Qu et al., 2015; Zhai et al., 2015; Myers and Norris, 2016; Brient and 1523 

Schneider, 2016; McCoy et al., 2017). These studies also establish that in GCMs sensitivities to 1524 

these factors are similar for the century time-scale climate warming as for present-day climate 1525 

variability. Using the GCM predictions of how the controlling factors change with climate warming, 1526 

Klein et al. (2017) find positive thermodynamic feedback and a smaller, partially compensating 1527 

contribution from negative stability feedback; the effects of other possible cloud-controlling factors 1528 

are either small or difficult to observationally separate from these. They estimate a 90% confidence 1529 

interval for the local radiative feedback of low-latitude marine low clouds of 0.3-1.7 W m–2 K–1 1530 

(Figure 6     ). They also compare their observational results to the LES studies reviewed by 1531 

Bretherton et al. (2015), finding that LES estimate a similar range of positive cloud feedback, with 1532 

trade cumulus regimes in the lower half of this range and stratocumulus regimes in the upper half 1533 

of this range. Observations from Cesana et al. (2019) also support the notion that the positive 1534 

feedback from trade cumulus regimes will be smaller than those from stratocumulus regimes.  1535 

 1536 

Given the agreement between observations and LES shown in Figure 6     , we base our assessed 1537 

tropical low cloud feedback on these two lines of evidence. Since 25% of the globe is covered by 1538 

marine tropical subsidence regimes, the local feedbacks shown in Figure 6      are multiplied by 1539 

0.25 leading to the Klein et al. (2017) estimate that the tropical low-cloud contribution to the global 1540 

cloud feedback is 0.25 ± 0.11 W m–2 K–1 (1-sigma). Thus we assign the mean value of the 1541 

likelihood function of the tropical low cloud feedback to +0.25 W m–2 K–1. However, we have 1542 

subjectively chosen to increase the standard deviation of likelihood function from 0.11 W m–2 K–1 to 1543 

0.16 W m–2 K–1, reflecting methodological uncertainties in the direct use of LES and current climate 1544 

observations to infer climate change. 1545 

 1546 

It is important to recognize that these estimates rely on the environmental conditions applied to 1547 

LES and the observations. These boundary conditions were taken from GCM climate change 1548 

simulations dominated by CO2 warming. If future changes in boundary conditions differ from those 1549 

predicted, this would imply a different response of low clouds. In particular, over the historical 1550 

period from 1980-2015, the tropical western Pacific SST increased markedly with little or no 1551 

change of tropical eastern Pacific SST. This pattern of SST change caused an increase in the 1552 

strength of the capping inversion in tropical subsidence regions (Zhou et al., 2016). The net result 1553 

was increased low cloud in tropical subsidence regions, which can be understood to result from the 1554 

combination of very little warming-induced reduction of low cloud (mechanism (1)) and strong 1555 

stratification-induced increase in low cloud (mechanism (3)) (Seethala et al., 2015; Zhou et al., 1556 

2016). Thus, due to the dependence of low cloud on the pattern of SST change, tropical low clouds 1557 
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increased even as the planet as a whole warmed over the period 1980-2015. This is the physical 1558 

explanation underlying the low-cloud contribution to the “pattern effect,” which significantly affects 1559 

interpretation of the historical record and is discussed in section 4.2. 1560 

 1561 

3.3.3   Tropical anvil cloud area feedback  1562 

 1563 

In addition to the positive feedback from high-level clouds rising in a warmer climate (section 1564 

3.3.1), a change in the areal coverage of these clouds in a warmer climate may exert a feedback. 1565 

Of particular interest is the response of “anvil” high clouds found in tropical deep convection 1566 

regions in conditions of high SST and large-scale ascent. These clouds are highly reflective of 1567 

solar radiation and at the same time greatly reduce the outgoing LW radiation to space (Kiehl 1568 

1994). Small changes in the balance between these large cooling and warming effects may cause 1569 

a significant radiative feedback on climate warming. 1570 

  1571 

A reduction in the area coverage of tropical anvil clouds with warming was first suggested to be a 1572 

strongly negative feedback by Lindzen et al. (2001), and is sometimes referred to as the “iris” 1573 

effect. Lindzen et al. (2001) hypothesized that the microphysical processes in convective updrafts 1574 

that provide much of the condensate for high-level clouds become more efficient with climate 1575 

warming causing a decrease in anvil cloud area. While GCMs show that the simulation of tropical 1576 

high clouds and their climate response are highly sensitivity to convective updraft microphysics 1577 

(Clement and Soden, 2005; Zhao, 2014; Mauritsen and Stevens, 2015; Zhao et al., 2016), there is 1578 

no clear evidence that precipitation efficiency would increase in a warmer climate.  1579 

  1580 

Another mechanism that could cause a decrease in anvil cloud area would be a tendency in a 1581 

warmer world towards increased convective organization—the propensity for clouds to cluster or 1582 

aggregate (Khairoutdinov and Emanuel, 2010; Mauritsen and Stevens, 2015). In both observations 1583 

(Tobin et al., 2012; Stein et al., 2017) and convection resolving models (Bretherton et al., 2005), 1584 

aggregated convective cases are considerably drier and have less upper-level clouds. However, 1585 

there is no clear evidence from cloud-resolving models that aggregation systematically increases 1586 

with temperature (Wing, 2019). Even if aggregation does not systematically vary with temperature, 1587 

the degree of aggregation in the base climate may affect climate feedbacks. This is because the 1588 

dryness and less upper-level cloud of aggregated states may cause smaller water vapor and high-1589 

cloud altitude feedbacks (Wing, 2019), or increase the sensitivity to feedbacks from exposed low 1590 

clouds (Bony et al., 2016). 1591 

  1592 

Bony et al. (2016) proposed another mechanism for a decrease in anvil cloud area with warming 1593 

called a “stability iris.” Specifically, in a warmer world there is increased static stability at the levels 1594 

where convective updrafts detrain and form high-level clouds. This increased stability is associated 1595 

with a weaker radiatively-driven divergence at these heights, which results in less detrained mass 1596 

and hence less anvil cloud.  1597 

  1598 

While these proposed mechanisms generally suggest reduced anvil cloud area with warming, they 1599 

do not determine the net cloud radiative effect that would impact S.  A separate theoretical 1600 

argument by Hartmann et al. (2001) posits that large-scale circulations act to keep net cloud 1601 

radiative effects of tropical deep convection regions close to the small net cloud radiative effects of 1602 

nearby non-convective regions. If such considerations apply to a warmer world, this would predict 1603 

small net cloud feedbacks from clouds in tropical deep convective regions. 1604 
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  1605 

As for GCMs, they are not deemed trustworthy for the simulation of anvil cloud area because they 1606 

lack sufficient cloud microphysics and convective organization processes, among other reasons. 1607 

GCMs also largely fail to reproduce the observed increase in outgoing LW radiation that 1608 

accompanies warming on interannual timescales (Mauritsen and Stevens, 2015) despite 1609 

simulating some decrease in anvil cloud area with warming at least in some models (Bony et al., 1610 

2016). Thus little confidence is placed in the small GCM response of tropical high cloud area with 1611 

warming (Figure 5     d). 1612 

  1613 

One might place greater confidence in convection-resolving models, but results are varied. While 1614 

cloud-resolving models run in limited-area or tropical channel domains tend to simulate decreases 1615 

in high cloud area with warming (Bony et al., 2016; Cronin and Wing, 2017), global or near-global 1616 

models with convection permitting resolution simulate little change (Bretherton et al., 2014, 1617 

Narenpitak et al., 2017) or even increases (Tsushima et al., 2014; Chen et al., 2016). The one 1618 

simulation with increased high cloud was very sensitive to the representation of ice cloud 1619 

microphysics and sub-grid-scale turbulence, suggesting that the current generation of convection-1620 

resolving models may not provide definitive answers about the response of tropical high clouds to 1621 

warming (Bretherton et al., 2015). 1622 

  1623 

This leaves observed variability as the primary guide to tropical high-cloud feedbacks, particularly 1624 

for the net radiative impact of high-cloud changes. Observational analyses focus on the response 1625 

of tropical high clouds to inter-annual variability, under the idea that short-term feedbacks in 1626 

tropical high clouds are relevant to their long-term climate feedbacks, an idea partially supported 1627 

by GCM analyses (Mauritsen and Stevens, 2015). Using CERES radiation budget measurements, 1628 

Williams and Pierrehumbert (2017) found that under warming, the large reduction in shortwave 1629 

reflection by fewer tropical deep convective clouds was a little bit smaller than the large reduction 1630 

in the longwave trapping by tropical deep convective clouds. The net result, seen in their Figure 3, 1631 

is a local cooling of 1-5 W m–2 K–1. We convert their estimate of a tropical feedback to a global 1632 

feedback by accounting for differences in area fraction and local versus global temperature 1633 

changes, and by removing an estimate of the positive cloud feedback from increased cloud altitude 1634 

(this is done so as not to double count the altitude feedback estimated in section 3.3.1). This yields 1635 

an estimate of the tropical anvil cloud area feedback of –0.23 ± 0.08 W m–2 K–1 (1-sigma) from their 1636 

study (note this uncertainty only includes sampling errors). 1637 

  1638 

Other observational studies have tried to estimate the net radiative effect of changing anvil clouds. 1639 

While a negative feedback was also found in Choi et al. (2017), some studies have found tropical 1640 

high clouds produce neutral (Zelinka and Hartmann, 2011) or even slightly positive cloud radiative 1641 

feedbacks (Lin et al., 2002; Chambers et al., 2002). While the results from Williams and 1642 

Pierrehumbert (2017) are given more weight because they use the most accurate radiation budget 1643 

measurements covering the most recent analysis period, we also recognize the considerable 1644 

uncertainties associated with the observational estimates, the differing quantities measured in 1645 

various studies, and the correspondence between short-term observed and long-term climate 1646 

feedbacks. Accordingly we assign a maximum likelihood value of –0.20 W m–2 K–1 , with a large 1647 

standard deviation of 0.20 W m–2 K–1. Our assessment would be consistent with the moderately 1648 

stabilizing negative cloud feedbacks found in Williams and Pierrehumbert (2017) but does not rule 1649 

out neutral cloud feedbacks, since a value of zero is within one standard deviation of our maximum 1650 

likelihood value. Note that the effect we find based on recent observational analyses is an order of 1651 

magnitude smaller than the strongly stabilizing cloud feedbacks once suggested by Lindzen et al. 1652 

(2001) and Lindzen and Choi (2011). 1653 



  

37 
 

   

 1654 

3.3.4 Land cloud feedback 1655 

 1656 

Preferential warming of land surfaces is expected to lead to relative humidity reductions, 1657 

particularly where the climatological temperatures are warm, i.e., the tropics, subtropics, and mid-1658 

latitudes in summer (Manabe et al., 1981; Findell and Delworth, 2005; Sherwood and Fu, 2014). 1659 

The primary explanation for this relative humidity reduction is that the combination of surface 1660 

evaporation and horizontal water vapor transport from oceans does not increase as fast with 1661 

warming as Clausius-Clapeyron requires to keep local relative humidity constant (Sherwood and 1662 

Fu, 2014; Scheff and Frierson, 2015; Byrne and O’Gorman, 2016). This is mainly because the 1663 

surface temperature warms considerably more over land compared with the ocean (Joshi et al., 1664 

2008; Byrne and O’Gorman, 2013a), a robust result of GCM warming simulations. Theoretically, 1665 

the greater warming over land may result in large part from atmospheric dynamics (Sobel and 1666 

Bretherton 2000) maintaining constant convective instabilities between ocean and land leading to 1667 

nearly the same changes in surface moist static energy (Byrne and O’Gorman, 2013b; Sherwood 1668 

and Fu, 2014). Secondary contributions to relative humidity reductions with warming may come 1669 

from reductions in soil moisture (Manabe and Wetherald, 1987; Berg et al., 2016) or regional 1670 

circulation changes such as the poleward expansion of subtropical dry zones (Scheff and Frierson, 1671 

2012). (Note that effects on relative humidity and clouds from the response of plant stomata to CO2 1672 

increases contribute to rapid radiative adjustment to CO2 (section 3.2.1) and not the temperature-1673 

mediated changes discussed here.) 1674 

  1675 

The consequence of the relative humidity reductions is a widespread reduction of cloudiness over 1676 

warm land regions that is very robustly simulated by GCMs (Bretherton et al., 2014; Kamae et al., 1677 

2016). Decreasing cloudiness due to decreases in relative humidity is also theoretically expected 1678 

and supported by observations of low clouds over land (Del Genio and Wolf, 2000; Zhang and 1679 

Klein, 2013). In GCMs, the contribution from cloud amount reductions over land to the global mean 1680 

cloud feedback is +0.08 W m–2 K–1 with standard deviation 0.03 W m–2 K–1, based upon the 1681 

calculations of Zelinka et al. (2016) applied to all available models. While clouds at all vertical 1682 

levels of the atmosphere decrease, the majority of this net cloud feedback comes from the 1683 

reduction in low clouds which increases the absorption of solar radiation but does not appreciably 1684 

affect the emission to space of long-wave radiation. Apart from GCMs, observations show 1685 

decreases in surface relative humidity over recent decades (Willett et al., 2018) which are 1686 

consistent with those predicted by the primary explanation given the observed amount of ocean 1687 

warming (Byrne and O’Gorman, 2018). These relative humidity reductions may be attributed to 1688 

anthropogenic forcing of the climate system (Douville and Plazzotta, 2017). 1689 

 1690 

In summary, we assess this feedback to be credible and assign a maximum likelihood value of 1691 

+0.08 W m–2 K–1 which matches the mean of available GCM predictions. However, we assign a 1692 

higher standard deviation, 0.08 W m–2 K–1, to reflect the fact that GCMs have substantial biases in 1693 

land climate which indicates some structural uncertainty. In particular, GCMs markedly 1694 

underestimate the relative humidity, cloudiness and precipitation and overestimate surface 1695 

temperature during the warm season (Ma et al., 2014; Morcrette et al., 2018). Furthermore, biases 1696 

in the mean climate appear to project upon climate responses to warming at least in middle 1697 

latitudes (Cheruy et al., 2014; Lin et al., 2017). 1698 

 1699 
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3.3.5   Mid-latitude marine low-cloud amount feedback 1700 

 1701 

Middle (30-60°) latitude cloud coverage is strongly modulated by baroclinic disturbances in the 1702 

storm track. A positive extratropical cloud feedback has long been expected to accompany global 1703 

warming owing to the poleward shift of the storm track and its attendant clouds towards regions of 1704 

less incoming solar radiation. In apparent support of this notion, trends in satellite and ground-1705 

based cloud observations indicate poleward shifts of middle latitude cloud maxima and/or 1706 

subtropical cloud minima (Bender et al., 2012; Eastman and Warren, 2013; Marvel et al., 2015; 1707 

Norris et al., 2016), but the exact magnitude of these shifts is uncertain owing to observational data 1708 

artifacts that can introduce spurious trends. Moreover, the observed sensitivity of net cloud 1709 

radiative effects to interannual variations in jet latitude appears surprisingly small, owing to 1710 

compensation between high- and low-cloud responses. Namely, whereas upper-level clouds tend 1711 

to move poleward with the jet, low-level clouds (which can be more tied to surface conditions) do 1712 

not. Rather, enhanced subsidence, stability, and cold advection lead to increased low-cloud 1713 

coverage in regions vacated by higher clouds (Grise and Medeiros, 2016; Tselioudis et al., 2016; 1714 

Zelinka et al., 2018). Thus, it is unlikely that substantial cloud feedbacks arise from storm track 1715 

shifts (Grise and Polvani, 2014; Ceppi and Hartmann, 2015). 1716 

  1717 

Mid-latitude, low-cloud responses could also be driven by thermodynamic processes similar to 1718 

those governing the tropical low cloud response (Qu et al., 2014; Narenpitak et al., 2017). Indeed, 1719 

Norris and Iacobellis (2005) infer a positive mid-latitude cloud feedback based on observed 1720 

variations in mid-latitude cloud properties with temperature, while controlling for other 1721 

meteorological influences. Zhai et al. (2015) and McCoy et al. (2017) also infer a positive feedback 1722 

from observed variations of low clouds with temperature in the 30-40° latitude band. 1723 

  1724 

GCMs consistently predict reduced cloud fraction throughout the mid-latitude troposphere with 1725 

warming (Figure 5     a), and the reduction in low cloud amount induces a strong positive feedback 1726 

(Figure 5     e). Modeled mid-latitude net cloud-radiative effect anomalies attributable to future jet 1727 

shifts are small compared to the total predicted radiative change (Kay et al., 2014; Ceppi and 1728 

Hartmann, 2015; Wall and Hartmann, 2015), consistent with the observational results above. A 1729 

positive mid-latitude cloud feedback may be caused by SST increases and stability decreases, but 1730 

further study is needed to quantify the dependence of low cloud on SST and inversion strength or 1731 

other cloud controlling factors at mid-latitudes before making confident attribution statements. 1732 

  1733 

In summary, despite the apparent lack of a substantial cloud feedback from poleward shifts of the 1734 

mid-latitude storm track, observed variations of mid-latitude low clouds (Norris and Iacobellis, 1735 

2005; Zhai et al., 2015; McCoy et al., 2017) provide qualitative support to the strong positive mid-1736 

latitude low cloud amount feedbacks robustly predicted by GCMs. Based upon the calculations of 1737 

Zelinka et al. (2016) applied to all available models, the GCM contribution to global feedback from 1738 

ocean areas between 30-60° latitude (27% of the globe) has a mean of 0.12 W m–2 K–1 with a 1739 

standard deviation of 0.08 W m–2 K–1. Extrapolating the observationally derived tropical low cloud 1740 

feedback (Klein et al., 2017) to the mid-latitude oceans after accounting for reduced insolation 1741 

yields a feedback between 0.08 and 0.20 W m–2 K–1, depending upon whether the observed 1742 

tropical low cloud sensitivities are assumed to apply to the entire 30-60° latitude band or only to the 1743 

30-40° latitude band investigated in Zhai et al. (2015) and McCoy et al. (2017). Considering both 1744 

the GCM and observational estimates, we assign a maximum likelihood value of +0.12 W m–2 K–1 , 1745 

consistent with the GCM mean and observational estimates, but increase the standard deviation to 1746 
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0.12 W m–2 K–1 to reflect uncertainty in GCM simulations of marine low cloud and the range of 1747 

observational estimates.  1748 

 1749 

3.3.6   High-latitude low-cloud optical depth feedback 1750 

 1751 

Cloud optical depth (opacity) can increase due to either smaller cloud particles (for a given cloud 1752 

water path) and/or increases in water path (Stephens, 1978). Several mechanisms that favor 1753 

increased optical depth with warming have been proposed. First, a shift of cloud ice to liquid upon 1754 

warming leads to brighter clouds, as a given amount of cloud water is more reflective if distributed 1755 

among liquid droplets, which tend to be smaller, rather than fewer large ice crystals (Storelvmo et 1756 

al., 2015). Second, increases in the liquid fraction of condensate can inhibit precipitation (Klein et 1757 

al., 2009; Solomon et al., 2011), resulting in clouds with more total water content. Third, the 1758 

adiabatic water content of clouds increases with temperature following fundamental 1759 

thermodynamic theory (Betts and Harshvardan, 1987). Opposing these effects, liquid clouds may 1760 

be thinned via increased entrainment drying with warming due to the greater saturation deficit 1761 

(Blossey et al., 2013; Bretherton 2015; Bretherton and Blossey, 2014; Bretherton et al., 2013; 1762 

Brient and Bony 2013; Rieck et al., 2012; Sherwood et al., 2014), though this mechanism has only 1763 

been investigated for subtropical low clouds, and its relevance for cloud thickness as opposed to 1764 

cloud fraction is uncertain. 1765 

 1766 

GCMs simulate a negative feedback poleward of about 40° latitude from optical depth increases, 1767 

especially for low clouds (Figures 5     d-e). GCMs also exhibit a strong correspondence across 1768 

time scale for the temperature sensitivities of high-latitude cloud optical depth and liquid water path 1769 

(i.e., an emergent constraint, Gordon and Klein, 2014; Ceppi et al., 2016), suggesting that present-1770 

day observations can be used to assess this feedback. Terai et al. (2016) inferred a shortwave low 1771 

cloud optical depth feedback of +0.24 W m–2 K–1 averaged between 40-70° of both hemispheres by 1772 

quantifying the sensitivity of low cloud optical depth to surface temperature in Moderate Resolution 1773 

Imaging Spectroradiometer satellite observations. In an independent analysis also using these 1774 

observations, Ceppi et al. (2016) derived a SW cloud optical depth feedback of –0.35 W m–2  per 1775 

degree of 850-500 hPa temperature change averaged over 45-60°S. Re-normalizing by global 1776 

surface warming and accounting for the fact that the feedback is weaker in the NH yields a value of 1777 

–0.20 W m–2 K–1. Assuming that these values also apply to the 40-70° latitude band (30% of the 1778 

globe) yields values of –0.06 W m–2 K–1 (Ceppi et al., 2016) and +0.07 W m–2 K–1 (Terai et al., 1779 

2016). Quantitative differences in these results likely arise from differences in cloud types analyzed 1780 

and in the predictors used in deriving cloud optical depth sensitivities. Guided by these two studies, 1781 

we assign the maximum likelihood value for the high-latitude low cloud optical depth feedback to 1782 

0.0 W m–2 K–1. The standard deviation of the likelihood function we assign to 0.10 W m–2 K–1, which 1783 

allows for additional uncertainties beyond these two studies. 1784 

 1785 

This assessed feedback value is consistent with observational evidence suggesting that the 1786 

negative high latitude optical depth feedback simulated by many GCMs is too strong, likely due to 1787 

an exaggerated phase change feedback. In GCM experiments in which mean-state super-cooled 1788 

liquid water content more closely matches observations (Tan et al., 2016; Frey and Kay, 2018), the 1789 

negative SW optical depth feedback at high latitudes is weakened considerably. This negative 1790 

feedback has also weakened in some CMIP6 models, possibly related to improvements in mean-1791 

state cloud phase distribution (Zelinka et al., 2020). 1792 

 1793 
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3.4  Process assessment of λ and implications for S 1794 

 1795 

Sections 3.2 and 3.3 have assessed the process evidence and assigned a Gaussian prior for 1796 

∆F2xCO2 and Gaussian likelihoods for individual climate feedbacks. Table      1 records the values of 1797 

these terms and which lines of process evidence were used in their derivation. 1798 

  1799 

According to eq. (18     ), the climate feedback parameter λ is equal to the linear sum of individual 1800 

feedbacks. We further assumed that the total cloud feedback can be written as a linear sum of the 1801 

individual cloud type feedbacks we assessed in section 3.3. Linearity of radiative feedbacks has 1802 

been established (Wetherald and Manabe, 1980; Zhang et al., 1994; Colman and McAvaney, 1803 

1997; Mauritsen et al., 2013), although independence is another matter (see below).  We formulate 1804 

a Gaussian PDF for λclouds by adding the standard deviations for the individual cloud feedbacks in 1805 

quadrature (assuming independent and uniform λi priors), and similarly, formulate a PDF for λ by 1806 

adding the standard deviations of all feedbacks in quadrature (cf. eq.      13     ).  Note this manner 1807 

of combining feedbacks is valid only for the Baseline prior (see section 2.3). The resulting PDF for 1808 

the total cloud feedback is N(+0.45, 0.33) (Table      1, Figure 7     ). Relative to the mean cloud 1809 

radiative effect of around –20 W m–2 in today’s climate (Loeb et al., 2018), a cloud feedback of 1810 

+0.45 W m–2 K–1 is equivalent to a ~2% decrease in the net radiative effect of clouds for every K of 1811 

temperature increase. Interpreting standard deviations as uncertainty, the total cloud feedback has 1812 

the largest uncertainty relative to the other feedbacks (Planck, water vapor + lapse rate, surface 1813 

albedo     , atmospheric composition and stratospheric          ), just as it has in past assessments. 1814 

In addition, quadrature summing of our assessed values shows that the uncertainty from all high 1815 

cloud types combined is approximately equal to that of all low cloud types combined, indicating 1816 

that future research is needed to improve the physical understanding of both high and low clouds. 1817 

 1818 

Our PDF for λ is N(–1.30, 0.44) (Table      1, Figure 8     a). Also assuming the prior on ∆F2xCO2 is 1819 

independent from λ, the PDF of S using only process evidence can be derived (Figure 8     c).  The 1820 

50% percentile (median) of the S PDF occurs at 3.1 K, with the 17% and 83% percentiles at 2.3 K 1821 

and 4.6 K. The asymmetric shape to the S PDF results from taking the inverse of the symmetric λ 1822 

PDF following eq. (     4) and the fact that in relative terms, λ is much more uncertain than ∆F2xCO2 1823 

(Roe and Baker, 2007). This implies that shifting the S PDF downward would require the 1824 

identification of an unknown negative feedback much larger in magnitude than the unknown 1825 

positive feedback that would be required to shift the S PDF upward by an equal amount 1826 

(Schlesinger, 1989). Equivalently, the process assessment constrains the lower bound of S more 1827 

tightly than its upper bound. 1828 

 1829 

One may question our assumption of independence between ∆F2xCO2 and λ, as well as amongst 1830 

likelihoods for all feedbacks except those for water vapor and lapse rate which we treat together in 1831 

Table      1. Of particular importance is a significant anti-correlation between ∆F2xCO2 and λ in 1832 

GCMs (Andrews et al., 2012a; Webb et al., 2013), which acts to reduce CMIP5 inter-model spread 1833 

of S by about 0.6 K relative to what would be anticipated if these were uncorrelated (Andrews et 1834 

al., 2012a; Caldwell et al., 2016). This anti-correlation cannot be explained as an artifact of the 1835 

Gregory method for calculating ∆F2xCO2 and λ (Gregory et al., 2004) as it is seen in GCM 1836 

experiments with both realistic and idealized configurations (e.g., fixed SST with globally uniform 1837 

SST increases of 4 K) (Ringer et al., 2014). It is also seen in ensembles of untuned perturbed-1838 

parameter versions of single models as well as ensembles of tuned GCMs (Webb et al., 2013). A 1839 

compensation between cloud feedback and adjustment is found to be the direct cause of this 1840 

∆F2xCO2 - λ covariance (Ringer et al., 2014; Chung and Soden 2017), but covariance exists even 1841 



  

41 
 

   

between feedbacks (Huybers, 2010; Caldwell et al., 2016; McCoy et al., 2016). Unlike the case of 1842 

the water vapor and lapse rate anti-correlation, the mechanisms behind feedback covariances are 1843 

generally not understood although new research attempts to explain these issues (McCoy et al., 1844 

2016). In conclusion, because these GCM covariances are not understood and initial analyses 1845 

suggest that they are weaker in the CMIP6 model ensemble (Zelinka et al., 2020), we 1846 

conservatively overlook the anti-correlation found in some GCMs, leading to a somewhat broader 1847 

overall uncertainty. But given the potential of feedback and forcing anti-correlations to reduce the 1848 

overall uncertainty in S calculated from individual feedbacks and forcing, it should be a high priority 1849 

for future research to determine the physical basis of these relationships and their relevance for 1850 

the real world. 1851 

 1852 

3.5  Constraints from observations of global inter-1853 

annual radiation variability 1854 

 1855 

A significant concern with our primary approach is whether we have recognized all important 1856 

feedbacks, i.e., whether there could be large missing feedbacks, particularly from any cloud types 1857 

that we did not assess. While GCMs indicate that the cloud feedbacks we haven’t assessed are 1858 

small in magnitude having a mean and standard deviation of –0.02 and 0.15 W m–2 K–1, 1859 

respectively (not shown), a more powerful way to address this concern is by considering the 1860 

studies that have attempted to constrain the total climate feedback parameter λ via analysis of 1861 

observed inter-annual variability in globally-averaged TOA net radiation. The premise is that inter-1862 

annual temperature fluctuations will have had the chance to activate feedbacks from any and all 1863 

cloud types. This premise is plausible (a) because the warming correlated with inter-annual 1864 

fluctuations of global mean temperature is global in nature, occurring in both the tropics and 1865 

extratropics (Dessler, 2013), and (b) because the inherent timescales of all clouds are from 1866 

minutes to at most a few days, and thus there is more than enough time available for clouds to 1867 

respond to the inter-annual changes in temperature.  1868 

 1869 

After accounting for changes in forcing, linear regression of observed anomalies in global net 1870 

radiation ΔN on observed anomalies in global surface temperature ΔT provides an empirical 1871 

estimate of λ according to (3.1). The reviews of Forster (2016) and Loeb et al. (2016) report that 1872 

the studies with the most robust methods and recent radiation data found λ values ranging from 1873 

−1.13 ± 0.5 to −1.25 ± 0.5 W m−2 K−1 (1-sigma) (Murphy et al., 2009; Dessler, 2013, Donohoe et 1874 

al., 2014; Trenberth et al., 2015). Dessler (2013) additionally estimated values of individual 1875 

feedbacks in (3.1) such as the water vapor, lapse rate, cloud, and surface albedo feedbacks, which 1876 

we have discussed in section 3.2 and displayed in Figure 4     . 1877 

 1878 

Empirically estimated feedback values change somewhat depending on the regression method 1879 

and the observational datasets (Forster, 2016; Loeb et al., 2016; Proistosescu et al., 2018), 1880 

although differences are generally small (Dessler and Loeb, 2013, Zhou et al., 2013).  Larger 1881 

changes occur when the regression is calculated over different time periods;  Loeb et al. (2016) 1882 

report feedback values of −1.18 ± 0.58 but −0.27 ± 0.47 W m−2 K−1 (1-sigma) for the 2001–2013 1883 

and 2001–2015 periods, respectively. Considering the range of uncertainty, these values are not 1884 

inconsistent with each other, and taken together they provide a similar mean and spread as our 1885 

PDF for λ from combining feedbacks (Figure 8     a).  Because the latter used Dessler’s (2013) 1886 

observed estimates of the clear-sky feedbacks in section 3.2, this comparison only tests the 1887 

consistency of our assessment of the total cloud feedback with Dessler’s estimate which is +0.49 ± 1888 
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0.35 W m−2 K−1 (1-sigma) for the 2000–2010 period. This value overlaps well with the PDF for the 1889 

total cloud feedback (Table      1). However, estimates for periods including more recent years are 1890 

more positive (Dessler, personal communication). 1891 

 1892 

A fundamental question is whether feedbacks diagnosed from short time scales are representative 1893 

of the long-term feedbacks (Forster, 2016; Loeb et al., 2016; Proistosescu et al., 2018). Because 1894 

many atmospheric processes involved in climate feedbacks evolve on short time scales (hours to 1895 

weeks) and thus quickly adjust to more slowly changing boundary conditions such as surface 1896 

temperature, the radiative response to warming of all climate feedback processes might be 1897 

invariant from inter-annual to long-term time scales. However, to the extent that unrelated radiation 1898 

anomalies drive surface temperature anomalies, the climate feedback parameter diagnosed from 1899 

the relationship between anomalies in radiation and temperature might be biased high (Spencer 1900 

and Braswell, 2010). Calculations though suggest that this is a relatively minor concern as the 1901 

dominant source of inter-annual variability in temperature is from ocean forcing and not radiation 1902 

(Dessler, 2011; Proistosescu et al., 2018).  1903 

 1904 

Another aspect of this question is whether the spatial patterns of surface temperature change seen 1905 

in inter-annual variability provoke global-mean responses similar to those of the smoother pattern 1906 

anticipated from long-term CO2 warming (Proistosescu et al., 2018). For example, low-cloud and 1907 

lapse-rate feedbacks depend strongly upon the pattern of surface temperature change (sections 1908 

3.3.2 and 4.2). The warming pattern from inter-annual variability is dominated by El Niño variability 1909 

within the tropics but also has warming at higher latitudes (Dessler 2013). As such, while not as 1910 

uniform, the inter-annual warming pattern exhibits some similarity to the long-term warming pattern 1911 

projected by GCMs which has often been called “El Niño-like” (Meehl and Washington, 1996; Yu 1912 

and Boer, 2002; Vecchi et al., 2008, also see section 4.2     ). Most notably at both long-term and 1913 

inter-annual time-scales, there is greater warming in the central and eastern Pacific relative to that 1914 

in the western Pacific and this favors positive low-cloud and lapse rate feedbacks. Given the 1915 

similarity in spatial pattern of surface temperature change, global averages of the feedbacks 1916 

inferred from inter-annual time-scales might be expected to exhibit some similarity to those 1917 

associated with long-term warming. 1918 

 1919 

GCMs can be used to test the similarity between global feedbacks at different time scales. Colman 1920 

and Hanson (2017) examined individual feedbacks in CMIP5 models and found that inter-annual 1921 

values diagnosed from pre-industrial control simulations were generally consistent with values in 1922 

response to climate warming for the water vapor, lapse rate, surface albedo, and total cloud 1923 

feedbacks (Figure 9     ). A general consistency also applies to decadal time-scale feedbacks 1924 

derived from pre-industrial control simulations (Colman and Hanson, 2018). In particular, 1925 

cloudiness exhibits similar spatial responses to increasing temperature at inter-annual and long-1926 

term time scales (i.e. an emergent constraint is present), with inter-annual and long-term 1927 

feedbacks well correlated across models, albeit with a slope different than unity (Zhou et al., 2015). 1928 

The consistency of GCM climate feedbacks between inter-annual variability and long-term 1929 

warming supports the use of the inter-annual observations in assessing climate feedbacks. We 1930 

conclude that the chances of major errors or omissions in our assessment are reduced, particularly 1931 

for our assessment that the total cloud feedback is positive, since we do not find any evidence of 1932 

missing feedbacks in the interannual variability. 1933 

 1934 

In summary, examining global-mean radiation variations provides a similar central estimate of λ 1935 

and comparable spread to that obtained from combining feedbacks. On its own, there is a danger 1936 

that our combining-feedback approach could miss unassessed feedbacks—particularly from 1937 
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clouds—and to account for this quantitatively we should broaden the PDF given in section 3.4 1938 

(without shifting its central value). On the other hand, the global-mean satellite evidence in 1939 

principle includes all rapid feedbacks including those from the clouds we didn’t assess. Moreover it 1940 

is largely independent from the individual process evidence; bear in mind that although a similar 1941 

approach was used in section 3.2 to help constrain clear-sky feedbacks, the main concern is 1942 

clouds. Therefore updating the PDF from section 3.4 with this additional evidence would make the 1943 

PDF narrower, again without shifting its central value. In light of these opposing considerations, 1944 

both of which are hard to quantify precisely, we judge the result obtained in section 3.4 to be a fair 1945 

representation of the overall probabilities given all evidence, and will be adopted in this 1946 

assessment. 1947 

 1948 

3.6   Emergent constraints on S from present-day 1949 

climate system variables 1950 

 1951 

In recent years, a wide variety of present-day climate system variables including clouds, water 1952 

vapor, precipitation, radiation, circulation and temperature, has been identified with skill at 1953 

predicting S through emergent constraints (Table      2). Emergent constraints on S also exist 1954 

related to the rate of warming since 1970 and tropical temperature changes during the Last Glacial 1955 

Maximum and mid-Pliocene warm period, and are discussed elsewhere (sections 4.1.3, 5.2.4 and 1956 

5.3.1, respectively). The common occurrence of variables related to clouds, and tropical low clouds 1957 

in particular, is not surprising given the leading role of the shortwave cloud feedback from tropical 1958 

low-clouds in explaining S variance in CMIP ensembles (Caldwell et al., 2018; Qu et al., 2018). 1959 

Several constraints involve the short-term temperature sensitivity of low-clouds, which is likely 1960 

related to their long-term feedback, and perhaps total λ, if the relationship between clouds and 1961 

their cloud-controlling factors were constant across time-scales (section 3.3.2). Indeed, if total λ 1962 

were constant, the fluctuation-dissipation theorem suggests that the amplitude and autocorrelation 1963 

of inter-annual temperature variability would depend on λ (among other factors), such that 1964 

observations of temperature variability might constrain λ and hence S. This is the physical 1965 

explanation given for the temperature variability emergent constraint of Cox et al. (2018). 1966 

  1967 

It is a relatively new activity to constrain future climate using the inter-model spread of a GCM 1968 

ensemble and observations of a correlated present-day climate system variable. Hall et al. (2019) 1969 

give a framework to consider this activity and provide “confirmation indicators” to gauge the 1970 

trustworthiness of an emergent constraint. This is helpful as spurious predictors may be present in 1971 

climate model ensembles due to their small size (Caldwell et al., 2014).  1972 

  1973 

One confirmation indicator is out-of-sample testing, which can partially be achieved by comparing 1974 

results across generations of CMIP ensembles. Caldwell et al. (2018) found that four out of five 1975 

emergent constraints constructed using the earlier CMIP ensembles had no skill at predicting S in 1976 

the CMIP5 ensemble. It will be interesting to see how many of the constraints in Table      2 will 1977 

have predictive capability in the new CMIP6 ensemble. 1978 

  1979 

Another confirmation indicator is having a verified and plausible mechanism explaining the 1980 

constraint. Although the proponents of each constraint have offered explanations, verifying them is 1981 

difficult. One test is whether the present-day predictor is also correlated with available measures of 1982 

the specific climate feedback identified in the physical explanation (Caldwell et al., 2018). 1983 

Unfortunately, the lack of specificity in the physical explanations for many constraints limits the 1984 
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applicability of this test. In this assessment, we take the viewpoint that all emergent constraints 1985 

have some (even if limited) information about S. 1986 

  1987 

The application of the same mathematical approach to all constraints facilitates comparison of their 1988 

predictions. Column 5 of Table      2 reports a central estimate of S derived for 17 emergent 1989 

constraints. This estimate is calculated from the ordinary least squares linear regression of S on 1990 

the present-day climate system variable evaluated at its observed value using the data for the 1991 

combined CMIP3/CMIP5 ensemble compiled in Caldwell et al. (2018), and hence, represents the 1992 

maximum-likelihood value of S assuming a linear relationship. More advanced methods of 1993 

determining the predictand S  from emergent constraint relationships are discussed in Bowman et 1994 

al. (2018), Schneider (2018), Williamson and Sansom (2019), and Brient (2020). 1995 

 1996 

All emergent constraints predict this maximum-likelihood value of S to lie between 2.8 K and 4.2 K, 1997 

consistent with the statements given in the original papers (Column 4 of Table      2). A general 1998 

tendency for greater agreement with observations of present-day climate system variables for 1999 

GCMs with S values in this range was also found in related model-weighting studies using 2000 

observations of multiple present-day climate system variables (Murphy et al., 2004; Knutti et al., 2001 

2006; Huber et al., 2011; Brown and Caldeira, 2017). 2002 

  2003 

Overall, these studies suggest that observations of a wide range of present-day climate system 2004 

variables are more consistent with S higher than 2.8 K. This consistency of predictions suggests 2005 

that it may be possible to form a single likelihood function to represent this evidence. We proceed 2006 

approximately, as there is no established literature on how to combine constraints, particularly 2007 

when dependencies between constraints may exist (Hall et al., 2019). (See Bretherton and 2008 

Caldwell (2020) for a first attempt to combine the predictions from multiple emergent constraints.)  2009 

 2010 

First, we consider these emergent constraints using present-day climate system variables to be 2011 

constraints on the climate feedback parameter λ, rather than S, since the present-day climate 2012 

system variables are not directly a function of CO2 variations and are more closely related to 2013 

climate feedback processes than S itself. To determine their predictions for λ, we calculate central 2014 

estimates for λ from the regression of λ on the present-day climate system variables in the identical 2015 

way as for S (Column 6 of Table      2). The central values of λ locate on average at −1.01 W m−2 2016 

K−1, and this average does not vary by more than 0.05 W m−2 K−1 if one excludes the emergent 2017 

constraints that don’t pass the ensemble robustness and physical mechanism tests of Caldwell et 2018 

al. (2018). We therefore assign −1.01 W m−2 K−1 as the mean of a Gaussian likelihood function for 2019 

λ based upon this emergent constraint evidence. 2020 

  2021 

The second step of assigning a standard deviation to the likelihood function is more complicated.  2022 

The uncertainties in λ calculated from the errors in the linear regression fit and the observational 2023 

uncertainty in the present-day climate system variable are insufficient to characterize the structural 2024 

uncertainty, especially for λ values outside the range seen in the available GCMs.  Several 2025 

considerations favor assigning a larger width to the likelihood function. First, the authors of 2026 

individual constraints may have consciously or unconsciously chosen details of their present-day 2027 

climate system variable to optimize its correlation with S over the GCMs they were examining, 2028 

which results in an over-confident prediction. Furthermore, the emergent constraint approach 2029 

implicitly assumes that all other GCM characteristics relevant for λ except the present-day climate 2030 

system variable are unbiased and complete, and to the extent that this is not the case, predictions 2031 

could be biased (Klein and Hall, 2015). Finally, when compared with the individual feedback 2032 

approach, the emergent constraint approach appears less rigorous given the general lack of 2033 
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verified mechanisms and relative indirectness of the relationship between the present-day climate 2034 

system variable and a highly integrated quantity like the total climate feedback parameter λ which 2035 

is dependent on multiple feedbacks (Klein and Hall, 2015; Hall et al., 2019). (This is less of a 2036 

concern for emergent constraints for individual climate feedbacks.) With these considerations in 2037 

mind, we assign the Gaussian width of the likelihood function from emergent constraints to be 0.6 2038 

W m−2 K−1, a value ~40% larger than the uncertainty in λ from the primary process approach 2039 

assessing individual feedbacks (section 3.4). The likelihood function from emergent constraints is 2040 

thus N(−1.01, 0.6) and illustrated in Figure 8     b. It indicates very low likelihood on the low end of 2041 

S (large negative λ), but much less constraint on the high end of S (small negative λ). 2042 

  2043 

One may wonder how independent emergent constraints are from the primary approach, given that 2044 

both approaches use GCMs and in some cases the same present-day observational evidence 2045 

(particularly for tropical low clouds). One could perhaps treat the latter issue by only examining 2046 

those constraints using present-day climate system variables not already considered by the 2047 

primary assessment, but a common reliance on GCM simulations of present-day climate would 2048 

remain. Furthermore, while independent information is suggested by the fact that all emergent 2049 

constraints have a central estimate of λ smaller than that of the process central estimate of −1.30 2050 

W m−2 K−1, the difference in predicted λ is not large compared to the overall uncertainty and could 2051 

be the result of a missing process biasing the prediction of either emergent constraints or the 2052 

individual feedbacks. Other arguments supporting independence are that the emergent constraint 2053 

and individual feedback methodologies are very different and that some emergent constraints use 2054 

present-day climate system variables not considered by the primary approach. We conclude that 2055 

the two approaches are not wholly dependent, but are also unlikely to be wholly independent. 2056 

 2057 

In summary, we consider the emergent constraints from present-day climate system variables to 2058 

offer evidence favoring S above 2.8 K. However, the evidence comes with a greater number of 2059 

issues than those affecting the primary approach. These issues are that: (a) many of these 2060 

emergent constraints for S are not confirmed with respect to either robustness to model ensemble 2061 

or a known physical mechanism, making it difficult to know how much confidence to give them; (b) 2062 

it is unclear whether the evidence from these emergent constraints is independent of the evidence 2063 

used in the primary approach to assess individual feedbacks; and, (c) we formulated a likelihood 2064 

function in an ad-hoc manner. While future work may address these issues, they currently warrant 2065 

a cautious approach to the treatment of these emergent constraints in the Bayesian analysis of S.  2066 

Accordingly, in section 7 we use the emergent constraint likelihood function only for a sensitivity 2067 

study, not for our Baseline calculation. In the sensitivity study, the emergent-constraint evidence is 2068 

assumed to be independent in order to explore its maximum impact. 2069 

 2070 

 2071 

3.7 Summary  2072 

 2073 

The climate sensitivity S is determined by the radiative forcing per CO2 doubling ∆F2xCO2, and the 2074 

sensitivity of top-of-atmosphere (TOA) net radiation to global-mean temperature (“total climate 2075 

feedback”), λ. In this section, we assessed the various lines of evidence—observations, theory, 2076 

GCMs, and process-resolving models—directly constraining these two quantities. The focus is on 2077 

physical processes that control the TOA energy balance via the global albedo and the greenhouse 2078 

effect. ∆F2xCO2 is relatively well known and its direct component can be calculated from the 2079 

equations of radiative transfer using line-by-line models. Most uncertainty therefore comes from 2080 
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the climate feedback parameter λ, which is in turn the sum of contributions λi from a set of distinct 2081 

feedbacks.  2082 

 2083 

Among these distinct feedbacks, those due to clouds remain the main source of uncertainty in λ, 2084 

although the uncertainty in the other feedbacks is still important.  It follows from eq. (     4) and the 2085 

relatively small uncertainty in other feedbacks and CO2 forcing that a negative feedback from 2086 

clouds is required to push S near or below 2 K. Moreover, this negative feedback must strengthen 2087 

nonlinearly to push S progressively lower, since dS/dλ ~ λ–2. We find that a negative total cloud 2088 

feedback is very unlikely,  and that there is sufficient evidence to effectively rule out the values of λ 2089 

required to bring S below 1.5 K, thus placing a strong constraint against very low S. 2090 

  2091 

Carefully quantifying these inferences on a feedback-by-feedback basis and for the CO2 forcing 2092 

produces a process-based PDF for S which has its median value at 3.1 K, and the 17% and 83% 2093 

percentiles at 2.3 K and 4.6 K (Figure 8     c). This is based on Gaussian means and standard 2094 

deviations for ∆F2xCO2 and each λi (Table      1), with broad prior probabilities and a priori 2095 

independence assumed for all quantities. Results are robust to sensitivity tests as discussed later 2096 

in section 7.3. This PDF still stands when accounting for (a) the additional constraint from separate 2097 

evidence from observations of global inter-annual radiation variability on λ, and (b) the additional 2098 

uncertainty associated with possible errors in identifying a complete set of feedbacks λi, the two of 2099 

which we take to roughly cancel out. In this sense, the total λ evidence from observations of inter-2100 

annual radiation variability makes an important contribution even though it is not directly used in 2101 

the likelihood.  2102 

 2103 

Separately, emergent constraints on S based upon present-day climate system variables offer an 2104 

alternative, but not entirely independent approach to assess S, based upon exploiting the 2105 

relationship across a GCM ensemble between S and an observed present-day climate system 2106 

variable. By combining the evidence from the available constraints, we assess a separate 2107 

emergent constraint likelihood function for λ (Figure 8     b). Relative to the individual feedback 2108 

approach, the emergent constraint approach points towards a somewhat smaller λ and larger S, 2109 

but with considerably less precision. It also comes with greater caveats necessitating a more 2110 

cautious treatment. 2111 

 2112 

Regardless of approach, the total cloud feedback is the key quantity driving the uncertainty, since 2113 

other feedbacks are well constrained by multiple lines of evidence supported by good basic 2114 

physical understanding. The cloud feedback is constrained mainly by summing up feedbacks 2115 

associated with different cloud regimes (section 3.3) but also by observable indicators of the total 2116 

global sensitivity (section 3.5). Over the past decade, the contribution to this feedback from tropical 2117 

marine low clouds has received the greatest attention due to its dominant contribution to the 2118 

spread in total cloud feedback across different GCMs (Bony and Dufresne, 2005). Recent research 2119 

has produced strong new evidence that these clouds provide positive feedback (section 3.3.2, 2120 

Figure 6     ). The reduced uncertainty surrounding this feedback component should be viewed as 2121 

a significant advance. However, uncertainty from other cloud responses remains significant and 2122 

possibly under-appreciated, thus worthy of greater attention in the future. 2123 

 2124 

The inferred positive total cloud feedback arises from several contributions. These include: (1) a 2125 

lifting of high cloud tops in warmer climates, as indicated by detailed numerical cloud simulations, 2126 

observed trends since the 1980s, climate models and expected from theory; (2) a dissipation of 2127 

tropical and mid-latitude marine low cloud, probably due to increased mixing of environmental air 2128 

into clouds as the climate warms, as indicated by observed cloud variability, and detailed 2129 
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numerical cloud simulations; and (3) a dissipation of warm-season low cloud over land due to 2130 

decreasing boundary layer relative humidity, as expected because land warms faster than oceans, 2131 

and as seen in observed humidity trends since the 1970s and in GCM simulations of warming. 2132 

Meanwhile, a sizeable negative feedback from clouds in tropical deep convection regions is 2133 

inferred from observations of inter-annual variability, but does not overwhelm the combined 2134 

positive feedbacks from rising high cloud tops and reduced low cloud cover. Separately, a negative 2135 

feedback due to transitions from ice to liquid in high-latitude clouds present in many GCMs is now 2136 

thought to be unrealistic. Interannual fluctuations in TOA energy balance, which reflect the net 2137 

effect of all cloud types, also point to a positive total feedback, suggesting that we haven’t missed 2138 

any major feedbacks by assessing only a finite set of individual cloud types. 2139 

 2140 

To reconcile all of the above evidence with an overall negative feedback from clouds (which is 2141 

what would be required for S to be below 2 K given the other feedbacks, as discussed above) 2142 

would require multiple lines of evidence to have failed significantly for at least one cloud type.  For 2143 

example, the low-cloud feedback could be negative only if observed sensitivities have been 2144 

misinterpreted, numerical cloud models are incorrect, the overall cloud feedback is near one end of 2145 

the range indicated by satellite data, and several emergent-constraint studies are incorrect. It 2146 

would be perhaps easier to imagine some unanticipated negative cloud feedback—but one that 2147 

simultaneously has not appeared in climate models, detailed cloud simulations, or observed 2148 

interannual variability or trends since 1979, so all lines of evidence would somehow have missed 2149 

this feedback. Similar multiple failures or misinterpretations of the evidence are probably required 2150 

to make the cloud feedback strongly positive enough to yield S significantly above 4.5 K, although 2151 

high S values are harder to rule out than low ones because S increases nonlinearly as positive 2152 

feedback increases. 2153 

 2154 

Several research trends have contributed to the recent progress in constraining S with process 2155 

understanding and are expected to contribute in the future:  2156 

 2157 

● Increased use of high-resolution process models such as large-eddy simulations and cloud-2158 

resolving models to understand and constrain the feedbacks from a wider variety of cloud 2159 

types. Increasing computational power allows for longer simulations of models with finer-2160 

resolution and larger domains. For example, larger domains will permit LES to simulate the 2161 

impact of mesoscale circulations on the feedbacks from tropical marine low clouds (Nuijens 2162 

and Siebesma, 2019). Furthermore, short-simulations of global models with a horizontal 2163 

grid of O(1 km) are now feasible. However, progress for cold clouds requires improved 2164 

representations of ice cloud microphysics. 2165 

  2166 

● Increased use of high-quality satellite observations with longer records to better constrain 2167 

climate feedbacks and the physical processes responsible for them. Continuing cloud and 2168 

radiation observations from both passive and active sensors will reduce uncertainty in 2169 

feedbacks inferred from inter-annual variability and identify whether the feedbacks 2170 

exhibited through trends to the emerging warming are consistent with current 2171 

understanding. However, progress requires maintaining observations that are in danger of 2172 

disappearing at the end of current satellite missions. High-quality in-situ observations will 2173 

also help constrain key process uncertainties not amenable to satellite observations. 2174 

 2175 

● Increased analysis and understanding of climate feedbacks. New diagnostics have 2176 

improved quantification and understanding of specific cloud feedbacks in both GCMs and 2177 

observations. Emergent constraints aid in identifying which present-day observations are of 2178 



  

48 
 

   

most value for inferring climate feedbacks. The interplay between GCM experimentation 2179 

and observational analysis has yielded important insights into topics such as the 2180 

relationships amongst climate feedbacks and their dependence on the spatial pattern of 2181 

warming. An important goal is to develop a more complete understanding of how the 2182 

climate feedbacks from short-term variability we observe relate to the feedbacks from long-2183 

term forced climate change we seek.  2184 

  2185 
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 2186 
 2187 
 2188 

4. Constraints from the Historical Climate 2189 

Record  2190 

 2191 

 2192 

What can we learn about climate sensitivity from the historical record of changes in global-mean 2193 

temperature and the energy budget? The world has warmed by approximately 1 K since the 18th 2194 

century (Allen et al., 2018). This warming is primarily attributable to the net effect of anthropogenic 2195 

greenhouse gases and aerosols, but other external influences on the climate system and internal 2196 

variability have also played a role (see assessment in Bindoff et al., 2013). A number of studies 2197 

have estimated climate sensitivity based on observed changes in temperature and ocean heat 2198 

uptake over a given period, along with the radiative forcing estimated from emissions inventories, 2199 

observations, and climate models. Best estimates of climate sensitivity from such approaches 2200 

range from 1-3 K and feature wide uncertainty ranges, particularly towards high values. More 2201 

recent studies appear to have lowered the upper limits on sensitivity owing primarily to better 2202 

constrained and stronger estimates of radiative forcing (see Knutti et al., 2017 and Forster, 2016 2203 

for reviews of recent progress), although recent wider ranges of aerosol forcing have put this 2204 

narrowing into question (see below).  2205 

 2206 

It is not straightforward to infer a constraint on climate sensitivity from the historical record. 2207 

Greenhouse gas forcing is not the only driver of historical climate change, and climate generates 2208 

substantial variability. Also, as introduced in section 2.3, the climate is not in equilibrium with the 2209 

forcing, and the feedbacks operating over the recent period may be different from  those that 2210 

determine sensitivity at equilibrium (see also Knutti et al., 2017). In section 4.1 we first diagnose 2211 

climate sensitivity using the traditional approach, using equations      (2) and      (     4), where we 2212 

ignore the role of variability in TOA radiation (V). We refer to the quantity thus estimated as Shist. 2213 

Section 4.2 then diagnoses a value of S employing the full equation (          6), taking into account 2214 

differences between radiative processes over the historical period compared to those over 150 2215 

years of a hypothetical CO2 quadrupling. Results are summarized and compared to earlier 2216 

estimates in section 4.3. 2217 

 4.1 Inferring Shist from the historical climate record 2218 

 2219 

Most published estimates of Shist based on the instrumental climate record directly or indirectly rely 2220 

on a simple global energy balance model for the climate system (eq. 19     ) (see Gregory et al., 2221 

2002; Otto et al., 2013; Forster, 2016). Expressed in terms of the inferred climate sensitivity for the 2222 

historical record, Shist, combining eqs. (     2) with (     4) and neglecting internal variability V, the 2223 

energy balance model becomes: 2224 

 2225 

Shist = ∆F2xCO2 ∆T / (∆F – ∆N),       (19     ) 2226 

 2227 

where ∆T is the forced change in global mean surface temperature, ∆F is the global mean radiative 2228 
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forcing, and ∆N is the change in global mean downward net top-of-atmosphere energy imbalance. 2229 

Here, ∆N can be measured directly either from the ocean heat content and/or from satellite 2230 

observations constrained by ocean heat content (Forster, 2016), and ∆F2xCO2 is the radiative 2231 

forcing for CO2 doubling. The change ∆ is taken between the present day and a base period early 2232 

in the historical record, boundary conditions that will be discussed in detail in section 4.1.1.  2233 

 2234 

This inferred historical sensitivity Shist should not be confused with the transient climate response 2235 

(TCR), which measures the transient warming of the Earth system before it reaches equilibrium. 2236 

By contrast, equation (19)      attempts to use transient observations to estimate an equilibrium 2237 

quantity by accounting for the radiative imbalance ∆N (Otto et al., 2013; Frame et al., 2006).  2238 

 2239 

Here, we assess the observationally based constraints on each of the three quantities: ∆T, ∆F and 2240 

∆N (section 4.1.1). We combine them with the PDF of ∆F2xCO2 from Table      1 to calculate the 2241 

resulting likelihood for different values of Shist assuming this simple energy balance model (section 2242 

4.1.2). We further investigate how such likelihoods change if the simple energy balance model (eq. 2243 

19     ) is modified by applying it to the changes in surface temperature and warming attributed to 2244 

greenhouse gases only, and by fitting models of varying complexity to observed spatial and 2245 

temporal patterns of climate change (section 4.1.3). 2246 

 2247 

 4.1.1   Observationally based estimates, their inputs and uncertainties 2248 

 2249 

Observationally based changes and their uncertainties depend on which periods of the historical 2250 

record are used to estimate them. We define the “base period” from which anomalies are taken to 2251 

be the average over years 1861–1880 (1st Jan 1861 to 31 December 1880) because during this 2252 

time greenhouse gas levels were relatively close to (although not at) pre-industrial levels, there 2253 

were no large volcanic eruptions, and temperature records have adequate global coverage (see 2254 

Hawkins et al., 2017; Schurer et al., 2017). We also consider the alternative base period 1850-2255 

1900 (1st Jan 1850 to 31 December 1900) which spans some major volcanic eruptions but reduces 2256 

the impact of internal climate variability due to its extended length. We define “present day” as the 2257 

average over years 2006–2018 (1st Jan 2006 to 31 December 2018), a period over which the 2258 

global energy imbalance was observed with relatively small uncertainty. We use differences 2259 

between these two periods to estimate ∆T, ∆F, ∆N and produce constraints on Shist.  2260 

 2261 

4.1.1.a: Forced surface temperature change (∆T) 2262 

 2263 

In order to estimate the global-mean temperature change ∆T, we rely on gridded surface 2264 

temperature data. There are two recognized uncertainties associated with this observational 2265 

record. First, the surface network is sparse, particularly in the early portion of the historical record, 2266 

potentially leading to biased estimates of global mean temperature changes if observations are 2267 

missing over regions that are warming more (e.g., the Arctic) or less rapidly (e.g., the Southern 2268 

Ocean) than the global mean. Second, gridded temperature records generally blend sea surface 2269 

temperature (SST) over the oceans with near-surface air temperatures (SAT) over land, potentially 2270 

leading to an inconsistency, as S and Shist are often assumed to be based on global mean SAT 2271 

changes. For example, using observations that are based on a combination of SAT and SSTs to 2272 

estimate global SAT changes can lead to a small underestimate of observed warming (Richardson 2273 

et al., 2016). The underestimate becomes more severe when missing coverage data is neglected 2274 

as well (Schurer et al., 2018). This then would lead to an underestimate of S based on SAT.  2275 
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 2276 

To account for coverage bias in the observations, we use the dataset developed by Cowtan and 2277 

Way (2014), which corrects for missing data in the observational network. To compare blended 2278 

SST/SAT data in observations with SAT-only trends in the energy budget, we add an offset term to 2279 

the “blended” observations. This term is derived from the difference between CMIP5 model SAT 2280 

fields and blended model SAT/SST fields (here, taken from the “xax” blended fields in Richardson 2281 

et al., 2016). Uncertainties in the resulting estimated observational SAT fields was calculated by 2282 

adding in quadrature the 5% to 95% uncertainties in the Cowtan and Way (2014) trends to the 5%-2283 

95% range of the difference between SAT-only fields and blended model SAT/SST fields across all 2284 

CMIP5 RCP8.5 simulations, as the uncertainties were assumed to be independent and PDFs are 2285 

presumed Gaussian. The results were found to be insensitive to the choice of RCP scenario and 2286 

model. These estimates are detailed in Table 3     . 2287 

 2288 

The relatively small uncertainties in Table 3      account for temporal error autocorrelation (e.g., 2289 

Morice et al., 2012) but do not factor in internal variability. We quantify internal variability of global 2290 

mean temperature by considering all possible combinations of global temperature changes 2291 

between periods of the same length as used in our calculations (20 years to imitate years 1861-2292 

1880, 51 years for years 1850-1900 and 13 years for 2006-2018) that are separated by more than 2293 

a century within unforced pre-industrial control simulations of 21 CMIP5 models, giving an average 2294 

standard deviation of 0.08 K and 0.07 K for the shorter and longer base periods, respectively. 2295 

Absent knowledge of whether this has contributed to or detracted from the observed warming, we 2296 

combine (in quadrature) the uncertainty in warming arising from internal variability with that arising 2297 

from instrumental uncertainties (presented in Table 3     ). This yields our overall estimates of 2298 

uncertainty of  ±0.14 K and ±0.12 K (5%-95% ranges) for forced warming relative to 1861-1880 2299 

and 1850-1900, respectively (expressed as ranges in column 6 of Table 5). The main ∆T used in 2300 

this analysis (e.g., Figure 11     ) is taken over 1861-1880 to 2006-2018 as 1.03 (0.89 K to 1.17K, 5      2301 

to 95% range)      K (Table 5, line 1, column 6) due to the greater availability of data since 1861, 2302 

compared to 1850 and a relatively reduced level of volcanic activity.   2303 

 2304 

 2305 

4.1.1.b Global energy imbalance change (∆N) 2306 

 2307 

Since the ocean accounts for most of the energy storage in the climate system, ocean heat uptake 2308 

dominates the change in global energy imbalance ∆N. This means that a tight constraint on ocean 2309 

heat content changes can make the difference between a strong and very weak constraint on 2310 

climate sensitivity (e.g., Johannsen et al., 2016). Uncertainty in the dataset arises from incomplete 2311 

coverage, similar to the surface temperature discussed above, measurement techniques, and pre-2312 

industrial reference period. 2313 

 2314 

Here we estimate Earth’s global energy imbalance for 2006-2018 as 0.8 W m–2 (0.55 to 1.05, 5-2315 

95% range). This global imbalance is estimated from the change in ocean heat content over time, 2316 

estimated using in-situ ocean observations with near-global ocean coverage (Johnson et al., 2016; 2317 

Purkey and Johnson, 2010; Desbruyères et al., 2016) combined with heat content changes 2318 

associated with ice sheet changes, sea ice loss, and land warming (Mouginot et al., 2019; 2319 

Schweiger et al., 2011; Shepherd et al., 2018; Zemp et al., 2019). It is dominated by the uptake of 2320 

heat by the ocean, which accounts for over 95% of the imbalance (Johnson et al., 2016). This 2321 

range of global energy imbalance is supported by other analyses of in-situ observations (Ishii et al., 2322 

2017; Levitus et al., 2012; Cheng et al., 2017). It is also supported by several independent lines of 2323 

evidence suggesting that in-situ observations are accurate: (i) a high correlation between 2324 
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interannual variations in in-situ and satellite energy imbalance estimates (Johnson et al., 2016), 2325 

and (ii) the closure of the global sea-level budget (Chambers et al., 2017).  2326 

 2327 

The global energy imbalance assumed for both 1861-1880 and 1850-1900 base periods is 0.2 W 2328 

m–2 (0 to 0.4 W m–2 , 5 to 95% range), where these values are chosen to span those derived from 2329 

general circulation models (Lewis and Curry, 2015), energy balance modeling (Armour 2017), and 2330 

inferred ocean warming given observed SSTs using ocean GCMs (Gebbie and Huybers, 2019; 2331 

Zanna et al., 2019). As above, we quantify internal variability by considering all possible 2332 

combinations of global energy imbalance changes between periods of 20 (or 51) and 13 years in 2333 

length that are separated by more than a century within unforced detrended pre-industrial control 2334 

simulations of CMIP5 models, giving an average standard deviation of 0.07 W m–2 for both base 2335 

periods. The resulting value of the change in global energy imbalance is ∆N = 0.6 W m–2 (0.3 to 0.9 2336 

5% to 95% ranges assumed Gaussian, errors added in quadrature) for both base periods.  2337 

 2338 

4.1.1.c Radiative forcing change (∆F) 2339 

 2340 

The third important input is the total radiative forcing ∆F. While often referred to as an observable 2341 

quantity, radiative forcing is not directly observable and must be derived from radiative transfer 2342 

models supported by estimates of rapid adjustments from climate models. While greenhouse 2343 

gases have dominated the forcing over the historical record, other forcing agents such as aerosols 2344 

and land-use change have played important roles as well. Even relatively small forcings can 2345 

matter: while volcanic forcing is short lived, cases where volcanic forcing is markedly different 2346 

between the beginning and end of a period analyzed could lead to long term climate variations as 2347 

seen in the last millennium (see PAGES-2k; Schurer et al., 2014). These effects can contaminate 2348 

constraints (Lewis and Curry, 2015) and errors in volcanic forcing could indirectly impact the 2349 

magnitude of the forced response (see Santer et al., 2015 and Johannsen et al., 2014). We chose 2350 

the reference periods at the beginning and end of the historical record to minimize this effect. 2351 

However, uncertainty in radiative forcing is dominated by the contribution from anthropogenic 2352 

aerosols, especially via their impact on clouds, which is relatively unconstrained by process 2353 

knowledge or direct observations (Bellouin et al., 2020). Here, to avoid circular reasoning, we try 2354 

not to use constraints on aerosol forcing based on idealized models fit to the historical record (see 2355 

review in Bindoff et al., 2013) and instead, we rely on bottom-up estimates of aerosol forcing from 2356 

models with comprehensive atmospheric physics.  2357 

 2358 

We obtain our prior PDF of ΔF based on the approach of IPCC AR5 Chapter 8 (Myhre et al., 2359 

2013), but using data extended through 2018 (Forster, 2016), and updating a number of forcing 2360 

components. First, we use the SARF formula (see section 3.2.1) for CO2, CH4 and N2O, from Table 2361 

1 of Etminan et al. (2016). These SARF estimates increase CH4 forcing by 25% compared to AR5, 2362 

mainly to account for previously underestimated shortwave absorption (Etminan et al., 2016). To 2363 

this we add tropospheric adjustments and surface albedo estimated from the radiative kernel 2364 

analyses of Smith et al. (2018) to estimate a CH4 ERF over the historical period. Section 3.2.1 2365 

details a similar approach for CO2. To estimate the evolution of CO2 ERF over the historical time 2366 

period, the ERF-to-SARF ratios for CH4 and N2O are assumed to be constant over the period, 2367 

implying that the tropospheric and land-albedo adjustments scale with their SARF values. 2368 

Compared to the original AR5 time series, ozone ERFs and their time series are updated following 2369 

Myhre et al. (2017).  2370 

 2371 

Aerosol ERFs are taken from Bellouin et al. (2020), using the unconstrained PDF (Figure 8 of their 2372 

paper, with correction). The best estimate from Bellouin et al. (2020) utilizes top-down energy 2373 
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budget constraints and attribution studies, so to avoid circular arguments we only employ the 2374 

unconstrained estimate which does not rely on detection and attribution studies to constrain 2375 

aerosol through observed warming; or energy budget estimates. Compared to that of AR5, this 2376 

PDF has a longer tail towards strong negative ERF, thus representing an increased uncertainty, 2377 

with a peak around −0.8 Wm–2 and a 5 to 95% range of −3.15 to −0.37 Wm–2. This PDF is based 2378 

on combining ranges of estimates from known physical processes involved in aerosol forcing and 2379 

satellite and other observations.   2380 

 2381 

To calculate the forcing time series and its uncertainty, individual ERF time series for CO2, other 2382 

GHGs, stratospheric ozone, tropospheric ozone, land-use surface albedo, black carbon on snow, 2383 

stratospheric water vapor, contrails, solar and stratospheric volcanic aerosols are combined using 2384 

Monte Carlo draws, assuming each time series has constant fractional uncertainty computed from 2385 

the best estimate and the 5% to 95% range of the individual ERFs. These fractional uncertainties 2386 

were based on the 1750–2011 ERF uncertainties from Myhre et al. (2013). Since historical CO2 2387 

concentrations are accurately known, the uncertainty in CO2 ERF is assumed proportional to that 2388 

in ∆F2xCO2. For terms other than aerosol, individual half-Gaussian PDFs are used for lower and 2389 

upper bounds (Forster 2016; Myhre et al., 2013, 2015). For the total aerosol forcing including 2390 

aerosol cloud interaction, samples from the unconstrained PDF of Bellouin et al. (2020) are scaled 2391 

by a factor which reproduces the ranges of their PDF when applied to their forcing period 2392 

(1850/2005–2015). The resulting PDF for ΔF has a long tail towards smaller values because of the 2393 

aerosol component (Figure 10     ), with a median of 1.83 Wm–2 and a 5-95% range of (–0.03, 2394 

2.71) W m–2.  Table 4      details the ERF best estimates used for the individual components and 2395 

periods. The PDF of ∆F2xCO2 is given in section 3.2.1 (see Table      1). 2396 

 2397 

Results shown for comparison in Tables 4      and 5      also employ an aerosol estimate based on 2398 

AR5 data (Boucher et al., 2013) which did not explicitly include energy budget studies, but did rely 2399 

on expert judgement based on selected GCM results and satellite analyses. Figure 10      2400 

compares both estimates for the Baseline period used here. The increased uncertainty range in 2401 

Bellouin et al. (2020) compared to AR5 comes from assessing an increased number of aerosol-2402 

cloud-interaction processes, less confidence in the satellite-based estimates of aerosol forcing and 2403 

different choices in expert judgement. The orange line in Figure 10      is the posterior of ΔF that 2404 

has been computed from the overall assessment of S in section 7 of the manuscript. In comparison 2405 

to the prior PDFs, this is much more tightly constrained to positive forcing, ruling out a strongly 2406 

negative aerosol ERF. This means that, in our analysis, it is more S that is providing a constraint of 2407 

forcing over the historical period than vice versa (see Bellouin et al., 2020 and section 7). 2408 

 4.1.2  Computing the likelihood 2409 

The observed warming, increase in ocean heat uptake, and overall positive radiative forcing 2410 

change constitute evidence for Shist of above zero. To inform a PDF of Shist we need the likelihood 2411 

P(Ehist|Shist, ∆N, ∆F, ∆F2xCO2), which quantifies how likely it is that such evidence Ehist would be 2412 

observed given a putative value of Shist (see section 2.3). To obtain this we rearrange the energy 2413 

balance (eq. 19     ) so that a forward model (cf. eq.      3) arises for the predicted temperature 2414 

response ΔT from each combination of inputs ∆F, ∆N, ∆F2xCO2, and Shist: 2415 

 2416 

∆T = Shist (∆F − ∆N)/ ∆F2xCO2,      (20     ) 2417 

 2418 

where ∆F, ∆N, and ∆F2xCO2, are random variables having specified prior distributions (i.e., 2419 
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uncertainties) which we randomly sample, hence generating a sample of possible ∆T values, for 2420 

any given Shist. In doing this, to allow for the correlation between the CO2-forced part of ∆F and 2421 

∆F2xCO2 (Otto et al., 2013; Lewis and Curry, 2015), we decompose ∆F into its CO2 and non-CO2 2422 

constituent time series, and sample the latter independently of ∆F2xCO2 before recombining to 2423 

obtain the sample ∆F. We assume that the (prior) PDFs of ∆F and ∆N are uncorrelated 2424 

(independent). Note that ∆T is not the observed warming, but the expected warming based on the 2425 

other information, given Shist. The difference between ∆T and the best-estimate observation, ΔTobs, 2426 

equals the sum of the observational error and unforced variation of global-mean surface 2427 

temperature, which has a Gaussian prior distribution with standard deviation σe. Hence the 2428 

likelihood of the observed warming for any particular sampled combination of (∆F, ∆N, and ∆F2xCO2) 2429 

is a Gaussian of width σe evaluated at ΔTobs−∆T, and the overall or “marginal” likelihood of the 2430 

evidence given Shist is found by averaging over the sample (see section 2.4.2). This analysis 2431 

assumes that observational errors plus internal variability of ∆N and ∆T are independent. While it is 2432 

possible there may be some correlation in geographic sampling errors, we expect any added 2433 

uncertainty due to this to be swamped by other errors discussed below1.  2434 

 2435 

Figure 11     a shows the resulting likelihood for Shist, with the maximum likelihood Shist = 2.5 K. If 2436 

combined with a broad, uniform prior on Shist ~U(0,20) as common in published studies, this 2437 

likelihood produces a posterior PDF for Shist with a 5-95% range of 2.0-16.1 K and a median of 4.3 2438 

K. These values of Shist are higher than reported in recent publications (e.g., Forster, 2016; Lewis 2439 

and Curry, 2018; Table 5     ) for two reasons. First, we are using updated values of ∆T, ∆F, and 2440 

∆N.  Second, this Bayesian PDF for Shist is slightly different to the non-Bayesian distribution that 2441 

would be obtained by substituting those of ∆T, ∆F, ∆N and ∆F2xCO2 directly into eq. (19)      (5-95% 2442 

range of 1.9–14.4 K and a median of 3.1 K; Table 5      and the green curve in Fig. 11     (b)).  2443 

 2444 

The primary contributor to uncertainty in Shist is our limited knowledge of the historical forcing 2445 

associated with anthropogenic, tropospheric aerosols (Figure 11     a). Aerosol forcing is important 2446 

in determining the left-hand tail of the Shist estimates: the lowest estimates of Shist result when 2447 

aerosol forcing is estimated to be small or positive. If aerosol forcing were around zero, Shist could 2448 

be as low as 1.2 K. The possibility of net positive aerosol forcing is also considered to be small 2449 

based on process-based (thus, independent of energy balance models) estimates of aerosol 2450 

effects (Bellouin et al., 2020). On the other hand, as we cannot rule out an aerosol forcing more 2451 

negative than −2 W m–2, relatively high values of Shist cannot be ruled out either.  2452 

 2453 

Secondary contributors to uncertainty in Shist are the global warming trend and energy imbalance. 2454 

Sensitivity tests are shown in Table 5      assessing the impact of (i) using a different aerosol 2455 

forcing estimate, (ii) using a different base period (1850-1900 rather than 1861-1880), and (iii) 2456 

using a global temperature estimate that is a blend of sea surface temperature over oceans and 2457 

surface air temperature over land rather than being adjusted to produce a global surface air 2458 

temperature product (SAT). These secondary contributors produce ~10% or smaller changes to 2459 

central estimates of Shist. Our main analysis in Table 5      uses Cowtan and Way SAT–derived 2460 

temperatures from 1861-1880. While the present-day energy imbalance is well constrained by 2461 

ocean temperature observations, the energy imbalance prior to about 2002 is uncertain, and we 2462 

must rely entirely on models to estimate energy imbalance prior to about 1950. A sensitivity test of 2463 

eliminating nearly all uncertainty in ∆T and ∆N (Fig. 11     a) demonstrates that the uncertainties in 2464 

these values contribute little to the overall uncertainty in Shist. 2465 

                                                 
1

 Our calculations do not account for a small correlation between ∆N and ∆T (mean r2 of ~0.1) in 

the control simulations, which would have a negligible impact on the results. 
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4.1.3  Consistency with estimates based on other forward models 2466 

The energy budget approach used above facilitates comparison with several previous estimates. 2467 

However, it does not make full use of the observational record. In particular, by using only global 2468 

mean quantities diagnosed as differences between the two periods over a century apart, it does 2469 

not make use of any spatial or temporal information within the historical climate record. Temporal 2470 

information may be particularly useful to reliably account for the effect of volcanic forcing, which 2471 

can cause long-term change (e.g., Broennimann et al., 2019) including in the ocean (Gregory et 2472 

al., 2013; note that as 4.1.2 uses model-based estimates of ocean ∆N to 1950 prior to 2473 

observations being available, this effect is negligible here). It can also make use of the difference 2474 

in time evolution of greenhouse gases versus aerosols after the 1980s, which can help disentangle 2475 

their effects (e.g., Undorf et al., 2018 and references therein). We ask in the present section: do 2476 

estimates that use both the spatial and temporal history of anthropogenic and naturally forced 2477 

warming further constrain S? In other words, would we get different or stronger constraints if we 2478 

made use of that additional information? 2479 

 2480 

We address this question by first comparing the above results to an estimate based on the portion 2481 

of the observed surface and ocean warming that has been attributed to increasing greenhouse 2482 

gases (Tokarska et al., 2020a): ∆Tghg, ∆Fghg, and ∆Nghg. Attribution makes use of the time-space 2483 

pattern of warming to disentangle the effects of other forcings, particularly aerosols, from those of 2484 

greenhouse gases and then applies the same energy budget equations (20     ) as above, but uses 2485 

attributed warming and greenhouse-gas-only forcing changes. This sharply reduces forcing 2486 

uncertainty, but increases uncertainty in the warming in the ocean and atmosphere, as there is 2487 

uncertainty in the amount of warming that can be attributed to greenhouse gases (see Bindoff et 2488 

al., 2013 for an assessment of attributed warming). Note that the analysis ends in 2012 due to the 2489 

availability of single-forcing simulations. Note also that it neglects changes in ∆N other than ocean 2490 

warming, which are estimated to be small above. The results, shown in Figure 12     , illustrate that 2491 

the use of the time-space pattern from observations in deriving attributed inputs to equation (20) 2492 

reduces uncertainty by effectively down-weighting very strong aerosol forcing as less consistent 2493 

with observations. Note that PDFs arising from this approach, using a flat prior in Shist, yield Shist of 2494 

1.3 to 3.1 K      (5% to 95% interval with the most likely value at 2 K     , and median 2.1 K     ). 2495 

Some studies have chosen to double the noise variance to address uncertainty in the pattern of 2496 

warming (e.g., Schurer et al., 2018) which would widen our results if done here (dotted lines in the 2497 

figure). In contrast, direct sampling of the distribution (dashes) rather than using a flat prior in S 2498 

has a small influence on the PDF.  2499 

 2500 

As an alternative to the energy-budget approach, where Shist is diagnosed from long-term changes 2501 

in Earth's energy budget discussed in section 4.1.2 and above for a greenhouse-gas-only energy 2502 

budget, several groups have employed a framework in which Shist (or a feedback parameter λ, 2503 

which is the inverse of Shist) is only one of multiple parameters of a simple dynamical model 2504 

simulating multiple physical processes. These dynamical models exploit differences in the spatio-2505 

temporal responses to different forcings and are particularly effective in distinguishing between the 2506 

responses to abrupt forcings like volcanic eruptions and slower-varying forcings like greenhouse 2507 

gases. Generally, approaches use Bayesian priors and multiple free parameters (variables) 2508 

including climate sensitivity, aerosol forcing, and ocean effective diffusivity or a similar quantity. For 2509 

a given set of these variables, the dynamical model is integrated forward, and the likelihood is 2510 

computed by comparing observations to the full spatio-temporal model output. Posterior estimates 2511 

of Shist arise from updating prior information on Shist, aerosol forcing, and rate of ocean heat uptake, 2512 

using the dynamical model and observations; and then integrating out the latter two variables 2513 
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(Forest et al., 2002; Knutti et al., 2002; Frame et al., 2005). Many published estimates are 2514 

available (e.g., Andronova and Schlesinger, 2001; Forest et al., 2002; Lewis, 2015; Libardoni and 2515 

Forest, 2012; Aldrin et al., 2012; Skeie et al., 2018; Johansson et al., 2015; see Knutti et al., 2017 2516 

for references and details). Estimates will be the more powerful and reliable, the more data they 2517 

use up to the present period, the more effectively they use time-space patterns to distinguish 2518 

between causes of change, and the more state-of-the-art the aerosol forcing and climate models. 2519 

Note that posterior ranges of Shist are sensitive to the choices of dynamical model and 2520 

observational dataset, suggesting that the complex spatio-temporal likelihoods employed with 2521 

these models can amplify both model structural differences (Annan, 2015; Bodman and Jones, 2522 

2016) and observational errors (Libardoni and Forest, 2011). Furthermore, the ranges are sensitive 2523 

to the choice of prior distributions (see e.g., Frame et al., 2005; Bodman and Jones, 2016; Lewis, 2524 

2014; Knutti et al., 2017; see also sections 2.4.4, 7.2     r). Figure 12      shows (for illustration 2525 

only) the results of two approaches when using a uniform prior in Shist, which yields an estimate of 2526 

what a likelihood function against S would look like for comparison to the result of section 4.1.1. 2527 

Both estimates shown (Skeie et al., 2018, and Johansson et al., 2015) use a full Bayesian 2528 

treatment     . These studies analyze similar observed periods (1880-2011 for Johannson; 1850-2529 

2014 for Skeie et al., 2018) but use slightly different datasets for surface temperature and ocean 2530 

heat content and employ different time-dependent dynamical models, with separate 2531 

representations for land and ocean in Johansson (2015) and separate representations for northern 2532 

and southern hemisphere in Skeie et al. (2018). They also use different priors for model 2533 

parameters other than Shist, differ in their treatment of volcanism and total forcing uncertainty, and 2534 

use different estimates of natural variability (e.g., the Johannsen et al. estimate widens if not using 2535 

ENSO as a covariate). 2536 

 2537 

These choices translate to large differences in estimates of Shist. Skeie et al. (2018) report a 90% 2538 

interval of 1.2-3.1 K, while Johansson et al. (2015) estimates a 5-95% range of 2.0 to 3.2 K (for a 2539 

comparison of all available estimates to date, see Knutti et al., 2017). We attempted to encompass 2540 

both results into a synthetic PDF based on an inverse Gaussian (not shown), which maintained a 2541 

thicker tail on the right-hand side from both estimates by matching the 95th percentile, but 2542 

encompassed the Skeie et al. lower 5% tail and widened this tail (making the 10-90% range fit the 2543 

5-95% range) to account for overall structural uncertainties. The resulting PDF was very close to 2544 

the greenhouse-gas-attributed case (red curve) for doubled variance shown in Figure 11     .  2545 

 2546 

We emphasize that neither the global energy budget approach (section 4.1.2) nor fitted dynamical 2547 

models provide a purely observational constraint on Shist. The estimates of ∆T, ∆F, ∆N, and ∆F2xCO2 2548 

used are necessarily based on a combination of observational data with multiple models. Climate 2549 

model data are employed to estimate global-mean, near-surface air temperature change, to infer 2550 

missing values, or the effects of blending (Cowtan et al., 2015; Richardson et al., 2016). ERF time 2551 

series depend on radiative transfer models and model-estimated aerosol effects and climatological 2552 

atmospheric structure. And though observations of ocean warming over recent decades provide 2553 

increasingly precise estimates of the modern global energy imbalance (Johnson et al., 2016; 2554 

Trenberth et al., 2016), climate models are necessary to evaluate the global energy imbalance 2555 

during the pre-industrial period against which historical warming is compared (e.g., Lewis and 2556 

Curry, 2015) as well as its internal variability. 2557 

 2558 

Moreover, even the energy budget equation (section 4.1) is a simplified model (Hegerl and Zwiers, 2559 

2011). There are several notable assumptions inherent in this model (see section 2.2). For 2560 

instance, it assumes that the global temperature response to an equivalent magnitude of forcing 2561 

associated with different radiative forcing agents or global ocean heat uptake will be the same. 2562 
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Equation (19)      also assumes that global radiative response to warming is exactly proportional to 2563 

global-mean temperature change, and that the radiative feedbacks governing radiative response 2564 

do not vary in time or state. As the radiative response to warming varies within comprehensive 2565 

global climate models (e.g., Winton et al., 2010; Armour et al., 2013; Rose et al., 2014; Shindell 2566 

2014; Andrews et al., 2015; Marvel et al., 2015; Proistosescu et al., 2017; Armour 2017; Ceppi and 2567 

Gregory 2017; Marvel et al., 2018; Andrews et al., 2018; Dong et al., 2020) energy-balance models 2568 

could be developed that account for such variation (e.g., Ceppi and Gregory, 2019). In the next 2569 

section, we explore these limitations and consider the extent to which estimates of Shist from the 2570 

historical record constrain the effective climate sensitivity S targeted in this assessment. 2571 

 2572 

The rate of warming since only the 1970s or 1980s can also be exploited as an emergent 2573 

constraint on TCR and on climate sensitivity (when accounting for the nonlinearity in the response 2574 

between the present day and equilibrium), as aerosol forcing changes are thought to be relatively 2575 

small over this period in the global mean (Jiménez-de-la-Cuesta and Mauritsen, 2019; Tokarska et 2576 

al., 2020b). The more recent CMIP6 models have a wider range of climate sensitivity than CMIP5, 2577 

and many exhibit a strong warming since the 1970s (Forster et al., 2019), allowing for a relatively 2578 

strong emergent constraint on TCR (Winton et al, 2020; Nijsse et al., 2020; Tokarska et al., 2579 

2020b). These estimates are susceptible to potentially large and unaccounted for uncertainties in 2580 

the pattern effect which make it challenging to constrain S from such methods (Jiménez-de-la-2581 

Cuesta and Mauritsen, 2019). They also likely underestimate the role of aerosol radiative forcing 2582 

and its uncertainty as they assume the models’ small aerosol forcing change since 1970 is correct, 2583 

whereas aerosol forcing evolution might be more complicated (Ragayre et al., 2015).  2584 

 2585 

Overall, using the time-space information of past warming, either by fitting a simple model or 2586 

estimating the greenhouse gas contribution only to recent observed changes, tends to reduce the 2587 

upper tail of Shist while maintaining the lower (compare Figure 11      and 12     ). This suggests 2588 

that some of the stronger aerosol forcing values included in the recent, wider estimate of forcing 2589 

uncertainty used in section 4.2 are not readily compatible with historical observations, although 2590 

uncertainty in these ‘top-down’ estimates of aerosol are substantial, and the time evolution of the 2591 

forcing rather than its magnitude can also contribute to any poor fit seen with historical 2592 

observations. Nevertheless, we carry forward the estimate of Shist that is based on the overall 2593 

energy budget (section 4.1.2., Figure 11     ). We do so because it is the most up-to-date estimate, 2594 

and requires the least assumptions such as in the time-space pattern of aerosol forcing, which is 2595 

quite uncertain (Schurer et al., 2018).  2596 

 4.2 Transitioning from Shist to S 2597 

 2598 

Given constraints on Shist from the historical climate record, what can be said about the effective 2599 

sensitivity S as defined in section 2.1? If radiative feedbacks near equilibrium under CO2 forcing 2600 

were identical to the responses governing historical warming—in other words if there were a 2601 

unique, linear relationship between ∆N-∆F and ∆T—then S would be equivalent to Shist. However, 2602 

there is growing evidence that this relationship has not been constant in time and that the 2603 

sensitivity Shist inferred over the historical period may underestimate S, due to complications noted 2604 

at the end of section 2.2. 2605 

 2606 

Recognition of this problem began with model studies, but its key components have since been 2607 

identified in observations as well. Many studies spanning multiple generations of climate models 2608 

have found a strong tendency for radiative feedbacks to become less negative—an increase in 2609 
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climate sensitivity—as equilibrium is approached (Murphy, 1995; Senior and Mitchell, 2000; 2610 

Williams et al., 2008; Winton et al., 2010; Armour et al., 2013; Geoffroy et al., 2013; Li et al., 2013; 2611 

Rose et al., 2014; Andrews et al., 2015; Marvel et al., 2015; Gregory and Andrews, 2016; Zhou et 2612 

al., 2016; Knutti and Rugenstein, 2015; Rugenstein et al., 2016; Armour, 2017; Proistosescu et al., 2613 

2017; Ceppi and Gregor,y 2017; Lewis and Curry, 2018). This behavior arises from the fact that 2614 

the global radiative response ∆N to surface warming depends on the spatial pattern of that 2615 

warming (Winton et al., 2010; Armour et al., 2013; Andrews et al., 2015; Paynter and Frölicher 2616 

2015; Gregory and Andrews, 2016; Andrews and Webb, 2018; Zhou et al., 2017; Dong et al., 2617 

2019; Marvel et al., 2018; Andrews et al., 2018). The spatial pattern of warming can evolve for a 2618 

number of reasons including the different timescales of ocean adjustment at different geographic 2619 

locations (e.g., Stouffer, 2004; Marshall et al., 2015; Rugenstein et al., 2016b), an evolving 2620 

importance of different radiative forcing agents (Hansen et al., 2004; Shindell, 2014; Marvel et al., 2621 

2015), and internal climate variability (note that while the estimates of Shist discussed above include 2622 

the effect of internal variability on ∆T itself, they do not include its other impacts on the radiation 2623 

balance ∆N). The resulting changes in apparent feedback strength as spatial patterns of warming 2624 

evolve have therefore been termed “pattern effects” (Stevens et al., 2016), distinguishing them 2625 

from a feedback dependence on the magnitude of global-mean warming (e.g., Caballero and 2626 

Huber, 2013; Meraner et al., 2013; Bloch-Johnson et al., 2015; see section 5.1.3). 2627 

 2628 

New studies have clarified how pattern effects are likely to work. Figure 13      illustrates the key 2629 

components of how temperature patterns are expected to affect ∆N. Warming in the west Pacific 2630 

warm pool, a region of deep ascent in the troposphere, warms the troposphere and increases 2631 

tropospheric stability throughout the tropics. In turn, this gives rise to enhanced radiation to space 2632 

and enhanced low-cloud cover (e.g., Wood and Bretherton, 2006; Zhou et al., 2016; Andrews and 2633 

Webb, 2018; Ceppi and Gregory, 2017; Dong et al., 2019). In contrast, warming in the east Pacific, 2634 

a region of overall descent, is trapped in the lower troposphere, decreasing tropospheric stability 2635 

and leading to a reduction in low cloud cover (see section 3.3.2). The result is that warming in the 2636 

west Pacific produces negative cloud and lapse-rate feedback responses while warming in the 2637 

east Pacific produces more positive ones (Fig. 13     c). Warming at high latitudes produces a 2638 

muted radiative response associated with positive lapse-rate and sea-ice feedbacks (Armour et al., 2639 

2013; Po-Chedley et al., 2018; Dong et al., 2019) as well as through an impact on cloud cover 2640 

through changes in tropospheric stability (Senior and Mitchell, 2000; Winton et al., 2010; Rose et 2641 

al., 2014; Rose and Rayborn, 2016; Trossman et al., 2016). 2642 

 2643 

The impact of varying tropical sea surface temperature patterns on cloud cover on decadal to 2644 

centennial time scales, which is thought to dominate the pattern effects in models (Andrews et al., 2645 

2015; Zhou et al., 2017; Dong et al., 2019), has been seen in satellite observations as well. 2646 

Specifically the observational studies of Zhou et al. (2016), Loeb et al. (2018), Ceppi and Gregory 2647 

(2017), Fueglistaler (2019), and Loeb et al. (2020) find evidence for a pattern effect in the satellite 2648 

records of cloud cover and TOA radiation as well as in atmospheric reanalysis fields of 2649 

tropospheric stability. Importantly, GCMs appear to be able to capture the essential physical 2650 

mechanisms linking sea surface temperature patterns to radiative response (Loeb et al., 2020), 2651 

providing confidence in the theory behind the pattern effect and the use of models to estimate how 2652 

radiative feedbacks may change with evolving warming patterns (section 4.2.1). 2653 

 2654 

The dependence of ∆N on warming pattern implies that Shist will provide an accurate estimate of S 2655 

only if the pattern of long-term forced warming is similar to the observed pattern of warming over 2656 

the historical record. However, the projected pattern of long-term warming in response to CO2 2657 

forcing (Fig. 13     b) is strikingly different from the pattern of observed warming over the historical 2658 
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period (Fig. 13     a). While the predicted forced pattern is smooth, the observed pattern is highly 2659 

heterogeneous with little long-term warming in the east Pacific and Southern Ocean. This indicates 2660 

that if our understanding of cloud responses and the forced warming patterns is correct, the 2661 

historical record includes cloud responses that have damped warming, but which will not persist in 2662 

the long term. While the observed pattern is subject to uncertainties especially earlier in the record, 2663 

the pattern since 1900 is robust across several station-based datasets (Solomon and Newman, 2664 

2012), and its key features are supported by sea-level pressure trends (L‘Heureux et al., 2013) and 2665 

are consistent with trends reported for more recent periods in Pacific trade winds (England et al., 2666 

2014) and sea level (Rhein et al., 2013; White et al., 2014). 2667 

 2668 

There are likely multiple reasons for the heterogeneous historical warming. As discussed above, 2669 

comprehensive GCMs predict some robust changes in the pattern of warming as the climate 2670 

equilibrates to an imposed greenhouse gas forcing. In particular, warming tends to be delayed 2671 

within the eastern equatorial Pacific and Southern Ocean, which are regions of ocean upwelling 2672 

(e.g., Clement et al., 1996; Marshall et al., 2015; Armour et al., 2016). Yet the GCMs predict that 2673 

warming in those regions will eventually become amplified relative to their surroundings (e.g., Li et 2674 

al., 2013), resulting in more positive climate feedbacks and an increase in climate sensitivity as 2675 

equilibrium is approached (Winton et al., 2010; Andrews et al., 2015; Geoffroy et al., 2013; 2676 

Rugenstein et al., 2016; Armour, 2017; Proistosescu et al., 2017). Indeed, enhanced warming 2677 

within these regions can be seen in the warming predicted by CMIP5 models over the 150 years 2678 

following an abrupt CO2 quadrupling (Fig. 13     b)—the period corresponding to our climate 2679 

sensitivity metric S within the models. Enhanced temperature changes within these regions are 2680 

also supported by proxy reconstructions of past climate states (Masson-Delmotte et al., 2013; 2681 

Tierney et al., 2019, 2020). The observed warming pattern (Fig. 13     a) is atypical compared to 2682 

historical simulations of climate models. Some of the heterogeneity in early 20th Century SST 2683 

trends may reflect unaccounted-for offsets among groups of measurements (Chan et al., 2019), 2684 

but there remain discrepancies between modeled and observed warming over this period (Hegerl 2685 

et al., 2018). It is unclear if these reflect stronger internal variability than simulated in some GCMs, 2686 

observational error, or a combination of both. GCMs are also not generally able to capture the far-2687 

better observed pattern of SST trends since ~1980, particularly in the tropical Pacific Ocean (Zhou 2688 

et al., 2016) and Southern Ocean (Kostov et al., 2018). 2689 

 2690 

The observed pattern of SST changes since ~1980 resembles internal variability such as the 2691 

negative phases of the Interdecadal Pacific Oscillation (Meehl et al., 2016; Mauritsen, 2016) and 2692 

Southern Annular Mode (Kostov et al., 2018), and recently each seems to have begun reversing 2693 

(e.g., Stuecker et al., al. 2017; Loeb et al., 2018). This suggests a likely contributing role from 2694 

unforced variability. It is possible the observed warming pattern also contains a signature of 2695 

external forcing, such as by stratospheric ozone changes (Marshall et al., 2014), aerosols or 2696 

volcanic eruptions (Schmidt et al., 2014; Santer et al., 2015; Takahashi and Watanabe, 2016), or 2697 

that it constitutes a forced response not captured by models (e.g. McGregor et al., 2018; Kohyama 2698 

et al., 2017; Seager et al., 2019; see discussion in section 5). 2699 

 2700 

Regardless of the cause, the relative lack of observed warming within these key geographic 2701 

regions implies that radiative feedbacks will become less negative in the future if the long-term 2702 

warming pattern becomes more similar to that suggested by GCM simulations, paleo proxies and 2703 

theory, suggesting that S may be larger than that implied by Shist. 2704 
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 4.2.1 Quantifying the historical pattern effect 2705 

 2706 

The implication from current evidence outlined above is that the long-term feedback under CO2 2707 

forcing, λ, will be less negative than the apparent historical feedback, λhist. Here we use CMIP5 and 2708 

CMIP6 GCMs to quantify this feedback change, denoted 𝛥𝜆 = λ – λhist. Rearranging eq. (     6) 2709 

following eq. (20     ), we write 2710 

  2711 

  ∆T = −(∆F − ∆N)/ (λ − 𝛥𝜆)                            (21     ) 2712 

 2713 

allows us to evaluate the likelihood function of λ and in turn of our target climate sensitivity 2714 

according to S = −∆F2xCO2/λ (see section 2.3). 2715 

 2716 
Climate models generally suggest that feedbacks will become less negative in the future (𝛥𝜆 > 0) 2717 

as the spatial pattern of warming evolves, but because models do not fully reproduce observed 2718 

patterns, there are uncertainties in how best to quantify this. Armour (2017) and Lewis & Curry 2719 

(2018) considered changes in radiative feedbacks in CMIP5 model simulations with gradually 2720 

increasing CO2 at a rate of 1 percent per year (“1pctCO2”) (Gregory et al., 2015; Armour, 2017), 2721 

taking year 100 as an analog for historical warming. Comparing λhist with each model’s effective 2722 

feedback λ (estimated as λ = −∆F2xCO2/S within simulations of abrupt CO2 quadrupling 2723 

abrupt4xCO2), they find that the majority of models show a less negative global radiative feedback 2724 

under abrupt4xCO2 than under 1pctCO2, with an average radiative feedback change of 𝛥𝜆 = +0.2 2725 

W m–2 K–1 (–0.1 to +0.6 W m–2 K–1 range across models) from Armour (2017) and 𝛥𝜆 = +0.1 W m–2 2726 

K–1 (–0.2 to +0.2 W m–2 K–1 range across models) from Lewis and Curry (2018). Note these values 2727 

differ slightly from those in Armour (2017) and Lewis and Curry (2018) who estimated S based on 2728 

a regression over years 21-150 following abrupt CO2 quadrupling rather than years 1-150 as done 2729 

here. Using the early portion of abrupt4xCO2 simulations as an analogue for historical warming and 2730 

following the methods of Lewis and Curry (2018), Dong et al. (2020) find an average radiative 2731 

feedback change of 𝛥𝜆 = +0.1 W m–2      K     –1 (–0.2 to +0.3 W m–2 K–1 range across models) for 2732 

CMIP5 models and 𝛥𝜆 = +0.1 W m–2 K–1 (–0.1 to +0.3 W m–2 K–1 range across models) for CMIP6 2733 

models. 2734 

 2735 

A limitation of using 1pctCO2 and abrupt4xCO2 simulations to estimate feedback changes is that 2736 

they do not account for the influence of non-CO2 forcing agents (in particular, aerosols which force 2737 

the system very heterogeneously) and internal variability. Ideally, feedback changes could be 2738 

quantified within historical forcing simulations, but this quantification has been made for only those 2739 

few GCMs within which the historical radiative forcing has been quantified accurately enough for 2740 

calculations of λhist to be performed. Using historical simulations of the latest Hadley Centre Global 2741 

Environmental Model (HadGEM3-GC3.1-LL), Andrews et al., (2019) find an average radiative 2742 

feedback change of 𝛥𝜆 = +0.2 W m–2 K–1 (–0.2 to +0.6 W m–2 K–1 range across four ensemble 2743 

members). This value is on average larger than the 𝛥𝜆 = +0.04 W m–2 K–1 estimated using the early 2744 

portion of the model’s abrupt4xCO2 simulation (Dong et al., 2020), suggesting that the value of 𝛥𝜆 2745 

may depend on having a realistic representation of historical forcing and of volcanic forcing in 2746 

particular (Gregory et al., 2019). However, there is substantial spread in the value of 𝛥𝜆 across 2747 

ensemble members, consistent with the results of Dessler et al. (2018) who find that internal 2748 

climate variability alone results in a 0.5 W m–2 K–1 spread in λhist, and thus also in the value of 𝛥𝜆 2749 

across a 100-member, historical-simulation ensemble of the Max Planck Institute Earth System 2750 

Model (MPI-ESM1.1). Altogether, these coupled model results suggest mean value of around 𝛥𝜆= 2751 

0.2 W m–2 K–1 ± 0.4 W m–2 K–1 (5-95% range).  Assuming Gaussian uncertainties, eq. (21)     , 2752 
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along with historical estimates of ∆T, ∆F, ∆N, results in a maximum likelihood for S = 2.9 K (green 2753 

line in Fig. 14     , Table      6     ), somewhat higher than the equivalent value of 2.5 K for Shist 2754 

(black line in Fig. 11     a, Table 6     ). 2755 

  2756 

If models are to be a credible guide to the size of the pattern effect, they must accurately capture 2757 

the relative patterns of historical and long-term temperature change. However, historical and 2758 

1pctCO2 simulations of coupled models generally produce patterns of warming that more closely 2759 

resemble that of their abrupt4xCO2 simulations rather than that of observed warming (Fig. 13     ; 2760 

Seager et al., 2019), suggesting that these simulations may underestimate the pattern effect 2761 

(Marvel et al., 2018; Andrews et al., 2018). 2762 

 2763 

An alternative approach is to estimate the pattern effect on the basis of differences between the 2764 

observed ∆SST pattern and the anticipated long-term one. This method does not rely on model 2765 

calculations of transient change, but does rely on an accurate long-term ∆SST pattern. To 2766 

implement this method we use atmosphere-only simulations wherein observed SSTs and sea-ice 2767 

concentrations are prescribed as boundary conditions (Gregory and Andrews, 2016; Zhou et al., 2768 

2016; Silvers et al., 2017; Andrews et al., 2018; Dong et al., 2019). All other boundary conditions 2769 

(greenhouse gases, aerosols, etc.) are held fixed in time such that the SST and sea-ice impact on 2770 

the radiation balance (the feedback) can be estimated by linear regression. These atmosphere-2771 

only model simulations exhibit values of Shist that range from 1.6-2.1 K, in good agreement with that 2772 

derived from global energy budget constraints (section 4.1.2) and unanimously lower than values 2773 

of S found in abrupt4xCO2 simulations using the same models (2.4 to 4.6 K) (Andrews et al., 2774 

2018). Andrews et al. (2018) collect all existing such model runs (from six different models, albeit 2775 

only from four modeling centers), and find an ensemble-mean value of ∆λ = +0.6 W m–2 K–1 (+0.3 2776 

W m–2 K–1 to +1.0 W m–2 K–1 range across models). Similar values are found if the equilibrium 2777 

feedback is estimated as λ = − ∆F2xCO2/S rather than from the regression over years 1-150 2778 

following abrupt CO2 quadrupling as in Andrews et al. (2018).  2779 

 2780 

We prefer this approach for      estimating the pattern effect because it is derived using observed 2781 

SSTs and is thus not biased by errors in historical SSTs simulated by coupled models. However, 2782 

this estimate still hinges on several key considerations. The first is that it relies on the accuracy of 2783 

the observed SST and sea-ice changes. Using alternative SST datasets, Andrews et al. (2018) 2784 

found little change in the value of ∆λ within two models (HadGEM3 and HadAM3). The sensitivity 2785 

of results to the choice of dataset represents a source of uncertainty in the quantification of ∆λ 2786 

using atmosphere-only GCMs that has not been fully explored. The second consideration is that it 2787 

relies on the abrupt4xCO2 pattern of warming simulated by coupled models (Fig. 13     b) being an 2788 

accurate representation of long-term response to CO2 forcing. If the long-term warming pattern 2789 

were to resemble that of observed historical warming, this would imply a value of S that is closer to 2790 

our assessed value of Shist. The inability of coupled models to capture the observed pattern of 2791 

warming in the tropical Pacific (e.g., Seager et al., 2019) and Southern Ocean (e.g., Armour et al., 2792 

2016) may call into question their ability to accurately simulate the long-term pattern of warming. 2793 

However, a range of observational evidence from paleoclimate proxies and theory suggest that 2794 

amplified warming in the southern high latitudes will indeed eventually emerge (Masson-Delmotte 2795 

et al., 2013) once the deep ocean waters that are upwelled to the Southern Ocean surface are 2796 

warmed, likely taking hundreds of years or more (Armour et al., 2016). Moreover, proxy data since 2797 

the Pliocene suggests that warming in the eastern tropical Pacific will eventually become amplified 2798 

relative to the west (Tierney et al., 2019, 2020) as the upwelled water stems mostly from mid-2799 

latitudes (Fedorov et al., 2015). Moreover, as noted above, much current evidence points to the 2800 

observed pattern of warming being strongly influenced by internal variability and/or short-lived 2801 
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climate forcers. This suggests that the observed warming pattern is transient in nature. Thus we 2802 

assign a low probability that the forced pattern will strongly resemble the historically observed one. 2803 

 2804 

A third consideration is whether the models used here to quantify the pattern effect faithfully 2805 

represent the clouds and corresponding radiation response to these SST patterns. Comparison of 2806 

NCAR’s CAM5 to observed low-cloud trends in the East Pacific revealed that the model may 2807 

underestimate the cloud increase (Zhou et al., 2016). Analysis of six CMIP6 models driven by 2808 

observed SST and sea-ice boundary conditions suggests that the models can generally replicate 2809 

top-of-atmosphere radiation changes observed by satellite over 2000–2018, but that the models 2810 

may underestimate the sensitivity of global radiation to SST changes and thus the magnitude of𝛥𝜆 2811 

(Loeb et al., 2020). A final consideration is the extent to which the quantification depends on the 2812 

selection of models used. The six models used here (from Andrews et al., 2018) represent an 2813 

ensemble of opportunity, and it is unlikely that they capture all possible future feedback changes. A 2814 

broader analysis would be needed to draw conclusions as to whether the methods employed here 2815 

are biased. 2816 

 2817 

In light of these considerations, we choose for our main analysis ∆λ = +0.5 W m–2 K–1 with 2818 

Gaussian uncertainty ±0.5 W m–2 K–1 (5-95% range). This range is informed by the Andrews et al. 2819 

(2018) estimate of the pattern effect based on observed SSTs but allows for a greater (though still 2820 

small) possibility that the pattern effect may be smaller than reported in that study. Using this mean 2821 

value of ∆λ and uncertainty in eq. (21)     , along with historical estimates of ∆T, ∆F, ∆N, results in 2822 

a maximum likelihood for S = 3.8 K, substantially higher than that of Shist derived in section 4.1.2 or 2823 

that of S derived from transient coupled models (Fig. 14     , Table 6     ).  Combining this likelihood 2824 

(black line in Fig. 14) with a broad uniform prior on S ~ U(0,20) yields a posterior with a 2.8 to 18.6 2825 

K 5-95% range (               note that this large upper limit indicates that the data do not constrain 2826 

the upper limit of climate sensitivity beyond the prior). 2827 

 2828 

This estimate of the historical likelihood for S using a pattern effect based on observed SSTs 2829 

follows our preferred approach, and we carry this forward into section 7 to be combined with other 2830 

lines of evidence. However, we also consider the sensitivity of the results to a halving of the 2831 

uncertainty on our assessed value of ∆λ (Fig. 14     ). This reduces the 5-95% range slightly when 2832 

combined with a S ~ U(0,20) prior slightly from 2.8-18.6 K to 2.9-18.5 K. These results suggest that 2833 

the historical record currently provides only weak constraints on S, and that improved 2834 

quantification of both the pattern effect and the historical aerosol forcing is necessary to rule out 2835 

high values of S in particular. 2836 

 2837 

 4.3 Summary 2838 

 2839 

Because the climate sensitivity S would directly affect the magnitude of any radiatively-forced 2840 

climate change, the magnitudes of known changes can constrain S if enough is known about what 2841 

drove them. The best-observed example is the warming over the instrumental period. In this 2842 

section we assessed what this warming tells us about S. Over this period the greenhouse gas 2843 

forcings are known fairly accurately, while the largest uncertainties are the strength of non-GHG 2844 

forcings and the impact of non-equilibrium effects. These effects matter because the warming 2845 

period is not very long compared to time scales of natural variability and system response lags. 2846 

 2847 

The best-known non-equilibrium effect is the top-of-atmosphere (and surface) energy imbalance, 2848 
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which persists for decades to centuries after an applied forcing due to the long time required for 2849 

the oceans to fully equilibrate. This imbalance is reflected in changes in global ocean heat content, 2850 

which, along with the surface warming, is reasonably well measured in recent decades, albeit with 2851 

errors larger than sometimes appreciated. 2852 

 2853 

To quantify how consistent various climate sensitivities are with the evidence, following past 2854 

studies, we calculate a likelihood of the observed ocean heat content and surface temperature 2855 

changes as a function of S. This calculation employs a PDF of total radiative forcing, based on 2856 

direct observations and models of the various forcing agents and their radiative effects. 2857 

 2858 

A second non-equilibrium effect has recently come to the fore which significantly affects the 2859 

likelihood function, called here the historical “pattern effect.” Ocean surface warming in recent 2860 

decades has occurred in a much more heterogeneous geographic pattern than that predicted at 2861 

equilibrium under CO2 forcing. Model simulations and satellite observations now show that this 2862 

recent heterogeneity has driven net increases in low-cloud cover and global albedo, reducing the 2863 

warming relative to what it would have been with a smoother, equilibrium pattern of warming. If as 2864 

expected this heterogeneous pattern is temporary (either a transient or a natural fluctuation), the 2865 

implication is that S inferred from historical warming using straightforward assumptions or simple 2866 

models with constant S, which we have denoted Shist, is less than the true S. The direction of this 2867 

bias is physically understood and we are confident about that, but its magnitude is highly uncertain 2868 

because we rely heavily on GCM simulations to quantify it. The development of observational 2869 

constraints on the magnitude of the pattern effect are critical to be able to better constrain the 2870 

likelihood of high values of S based on historical evidence. 2871 

 2872 

Taking all the above factors into account we find that given the historical evidence, the maximum-2873 

likelihood value is S = 3.8 K , but values between 1.9 and 20 K and above can still be considered 2874 

consistent with the evidence (likelihood > 0.2). In particular the historical observed climate change 2875 

provides a strong constraint on the lower bound of S, effectively ruling out negative feedbacks, but 2876 

only a very weak constraint on the upper bound. This latter conclusion, which differs from many 2877 

previously published studies using the historical record, arises in part because the “pattern effect” 2878 

could potentially allow even high values of S to be reconcilable with only moderate historical 2879 

warming. The possibility of strong negative aerosol ERF also precludes setting a tight upper bound 2880 

on S. Indeed our high-likelihood range for Shist (not accounting for the pattern effect) is consistent 2881 

with most of those previous studies if we use older forcing and warming estimates, so the increase 2882 

here is due to revised estimates rather than any difference in methodology. The Bellouin et al. 2883 

(2020) aerosol ERF used here allows more negative tails than some recent estimates, especially 2884 

those that implicitly match aerosol forcing to the observed warming. Previous studies that have not 2885 

accounted particularly for the pattern effect produced energy budget constraints on S that were 2886 

unjustifiably tight and too low. 2887 

 2888 

The historical warming does provide strong evidence against S of ~1.5 K or less, because roughly 2889 

1 K of warming has already occurred, and this is likely all a forced signal (Allen et al, 2018; see 2890 

also Bindoff et al., 2013; Schurer et al., 2018); this realized warming is less than the equilibrium 2891 

warming, and from a forcing almost certainly less than ∆F2xCO2. Even assuming a very small 2892 

aerosol forcing, the lowest plausible observed warming (neglecting known negative biases), and 2893 

the highest plausible radiative imbalance during the base period, it seems nearly impossible to 2894 

assign non-negligible likelihoods to values of Shist (let alone S) less than 1.2 K. To reconcile the 2895 

evidence with an S below even 2 K under reasonable PDFs of observed warming and imbalance 2896 

would require either aerosol forcing to be near zero, or for aerosol forcing to be weak and the 2897 
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pattern effect to be weaker than expected. 2898 

 2899 

Accordingly, the historical record offers potential to further narrow the S range at both ends with 2900 

further research progress. If weak aerosol forcings can be ruled out, for example, the constraint at 2901 

the low end could rise (this may also gradually happen with further warming, if it continues at the 2902 

pace of the last few years). If the limit of strongly negative aerosol forcing were constrained, this 2903 

would sharply reduce the upper tail as it would no longer allow very small net forcing which, in 2904 

combination with large warming, leads to high estimates. On the other hand, if further research can 2905 

limit the maximum size of the pattern effect on the historical radiative balance, this could permit the 2906 

record to bound the high end of S, especially if aerosol forcing uncertainty is reduced. Future 2907 

avenues of research employing decadal changes and regional patterns with emergent constraints 2908 

over the historical period may eventually be able to place a tighter constraint on Shist that avoids 2909 

issues of circularity arguments with estimates of aerosol forcing, which combined with improved 2910 

quantification of the pattern effect, may lead to a tight bound on S.  2911 
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 2912 

5. Constraints from paleoclimate records 2913 

 2914 

Climate sensitivity estimates using paleoclimate information rely on a basic paradigm that there are 2915 

times before the instrumental period for which we have a reasonable estimate of a climatic state. In 2916 

particular, this concerns an estimate for global mean temperature that was sufficiently stable over 2917 

centuries to millennia (i.e., in a quasi-equilibrium state), together with estimates of how forcings 2918 

differed from the “pre-industrial” state. From these we can derive estimates of the overall sensitivity 2919 

of the climate state to radiative forcings. This means that, in contrast to studies of historical 2920 

constraints (section 4), paleoclimate studies do not consider disequilibrium in the planetary energy 2921 

budget or ocean heat content and in principle we can use the energy balance equation      (3). 2922 

However, we must contend with not just changes in greenhouse gases, but also changes in land 2923 

surface vegetation, ice (land and sea), topography, and even potentially continental shapes and 2924 

position (Farnsworth et al., 2019)  for deep time periods, as well as other forcing and climate 2925 

uncertainties that arise from the more limited information available. This requires equation      (3) to 2926 

be modified with various additional terms (see also section 2.2). These terms will be discussed in 2927 

more detail as they are introduced in the following subsections.  2928 

 2929 

To make climate sensitivity estimates from paleoclimate data compatible with the parameter S 2930 

targeted in this report (section 2.1), the influence of slow feedback processes needs to be explicitly 2931 

resolved. Feedbacks resulting from the expansion and reduction of continental ice sheets are 2932 

particularly important. The effects of vegetation and land-surface changes, and (partly vegetation-2933 

related) dust aerosol influences also need to be considered. While CO2 and CH4 concentrations 2934 

can act as feedbacks to other climate changes as well as forcings on paleo time scales, care 2935 

needs to be taken to account for this in estimates of S; all that is available are total values for CO2 2936 

and CH4 concentrations during the last 800,000 years (from ice cores), and only CO2 for older 2937 

times. Furthermore, in reality feedback strength is not a constant parameter of the climate system; 2938 

in particular, it may vary with the climate state and applied forcing, and this variation may be 2939 

significant in the context of paleoclimate.  2940 

 2941 

We consider colder climates than pre-industrial (including glacial cycles), and warmer periods than 2942 

pre-industrial separately, with the Last Glacial Maximum (LGM; ~20 thousand years ago) and mid-2943 

Pliocene Warm Period (mPWP; 3.3-3.0 million years ago) being the best known and most 2944 

comprehensively studied examples. In accordance with section 2, we develop estimates for a 2945 

likelihood function of the temperature change and priors on the forcings. Our basic approach is to 2946 

generate ranges that encapsulate the range of plausible estimates presented in the literature. 2947 

These are expressed in the form N(X,Y), which is a Gaussian distribution with mean X and 2948 

standard deviation Y (all uncertainties are 1 standard deviation unless otherwise stated). We then 2949 

calculate sensitivity likelihoods  based on these constraints using the modified versions of equation      2950 

(3). The modifications to equation (     3) are necessarily different in form for the cold and warm 2951 

periods due to the different level of evidence, and the differing approaches in published research. 2952 

Information from other intervals can, in principle, be included following a similar style of argument, 2953 

especially as further detailed records through older intervals of the last 1 to 2 million years emerge, 2954 

and as greater spatial coverage is developed. As an additional example, and as supporting 2955 
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evidence, we show the results obtained from analysis of the very warm period of the Paleocene-2956 

Eocene Thermal Maximum (PETM), but this is not used in our final estimate. 2957 

 2958 

As discussed in section 5.1, there is considerable uncertainty in measurements of climate 2959 

variables gleaned from paleoclimate. Therefore, researchers interested in climate sensitivity have 2960 

focused on intervals in the past when temperatures and greenhouse gas forcings have been very 2961 

different to those of today and thus where the signal is also large. In sections 5.2 and 5.3 we 2962 

present numerical values based primarily on our expert assessment of the relevant literature. We 2963 

then combine the information in section 5.4 to produce a likelihood function for S based on 2964 

paleoclimate information.  2965 

 2966 

5.1 Estimating climates in the past—methods and 2967 

sources of uncertainty 2968 

 2969 

The methods for obtaining paleoclimate changes and forcings from geologic evidence are less 2970 

direct than those using the instrumental record. This results in considerable additional uncertainty, 2971 

much larger than the uncertainty for direct measurements over the last few hundred years. We 2972 

outline some of the methods and sources of uncertainty here. Reducing the uncertainties has the 2973 

potential to lead to major improvement in future estimates of climate sensitivity using evidence 2974 

from the geological past.  2975 

 2976 

In practical terms, continental ice-sheet variations are approximated using global sea-level 2977 

reconstructions and modelling (Clark and Mix, 2002; Clark and Tarasov, 2014; Lambeck et al., 2978 

2006, 2010, 2014, 2017; Hansen et al., 2007, 2008, 2013; de Boer et al., 2010, 2012, 2014; 2979 

Rohling et al., 2012, 2017; Grant et al., 2014). Vegetation and land-surface changes are very 2980 

poorly constrained. For a few rare intervals, large scale biome reconstructions have been 2981 

produced  (typically ~125,000, ~20,000 and ~6,000 years ago; Prentice et al., 1993; Harrison et al., 2982 

1995, 2003; Wu et al., 2007; Bartlein et al., 2011; Hopcroft and Valdes, 2015; Kageyama et al., 2983 

2017; Otto-Bliesner et al., 2017). It is very difficult to obtain sufficiently dense global networks of 2984 

well-dated pollen data for such exercises; even for the well-studied LGM a robust vegetation map 2985 

has yet to be developed. High-resolution dust-aerosol records exist from only a few locations, and 2986 

mostly from the very remote polar regions (ice-core records; Lambert et al., 2008; Schüpbach et 2987 

al., 2018). Although dust is being incorporated in models (Kageyama et al., 2017; Otto-Bliesner et 2988 

al., 2017), and quality dust-flux records from downwind of the dominant source regions (the world’s 2989 

great deserts) are being developed, a high density of such records is needed because dust is 2990 

poorly homogenized in the atmosphere; it mainly influences the radiative balance close to, and 2991 

downwind of, the source regions.  2992 

 2993 

Past estimates of climate properties from direct measurements of atmospheric composition 2994 

comprise only greenhouse gas concentrations (CO2, CH4, and to some extent also N2O) in air 2995 

bubbles preserved in ice cores. The oldest records, from Antarctic ice cores, cover the last 2996 

800,000 years (Siegenthaler et al., 2005), and there is some further information as far back as 1 2997 

million years ago from shallow blue ice samples in Antarctica (Higgins et al., 2015; Yan et al., 2998 

2019). For other properties, including CO2 concentrations, so-called “proxy” measurements are 2999 

used, which are empirically calibrated to climate properties on the basis of their modern spatial 3000 
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distributions and/or on the basis of calculations through the underpinning physical or chemical 3001 

relationships (notably Boron-isotope data; see below).  3002 

For properties that are less globally homogeneous (e.g., sea level, land ice sheets, or 3003 

temperature), some level of modelling is required to transform sparse measurements into global 3004 

estimates. Such models vary in complexity, from a simple metric for latitudinal variation, smoothing 3005 

towards present-day patterns, or utilizing patterns from paleoclimate simulations with state-of-the-3006 

art climate models. In all cases, the community aims to develop a variety of independent proxies 3007 

for each predominant climate property (for a CO2 example, see Dyez et al., 2018; Badger et al., 3008 

2019), so that confidence in individual measures may be evaluated through comparison. This is 3009 

important because certain climate proxies may, for example, be affected by changes through time 3010 

in initial seawater ratios of the elements or isotopes used, or respond non-linearly to change in the 3011 

controlling climate property (with one end of the relationship relatively insensitive to change, so 3012 

that the proxy loses fidelity, or saturates). Cross-validation is especially valuable if it can be 3013 

performed between a proxy and direct measurements from ice cores; a key example concerns the 3014 

validation of CO2 reconstructions from the Boron-isotope proxy by intercomparison with direct 3015 

measurements of CO2 changes from ice cores (e.g., Martínez-Botí et al., 2015; Chalk et al., 2017; 3016 

Honisch et al., 2005; Foster, 2008; Raitzch et al., 2018). 3017 

Another issue with proxies is that many rely on fossilizing biological signal carriers (e.g., 3018 

foraminifera or concentrations of specific biomarkers), which implies a dependence over time on 3019 

species-specific behaviors, ecological niche changes, and biomineralization pathways. The 3020 

impacts of these issues are commonly minimized by limiting analyses to a single, well-defined 3021 

species or biomolecule, but further back in time we are inevitably dealing with species that are no 3022 

longer extant. Ecological equivalence is commonly assumed (mostly based on shape and shell-3023 

development similarities), supported by whole-assemblage evaluations of the entire suite of past 3024 

species’ ecological niche occupations relative to one another (commonly using stable oxygen and 3025 

carbon isotopes). However, working with extinct species in ancient time intervals clearly introduces 3026 

greater uncertainty than working with species alive today. 3027 

Finally, good chronology (dating) is essential when comparing records of different proxies or ice-3028 

core data. Here, relative age equivalence is even more important than absolute age control: for 3029 

evaluating paleoclimate sensitivity, past (proxy) values of climate forcing factors need to be 3030 

compared to synchronous values of temperature, no matter what the absolute age of the interval 3031 

is. Chronological control for such records is best in the past 40,000 years, when radiocarbon dating 3032 

is available, and age uncertainties are only up to a century or two in the best cases  (Reimer et al., 3033 

2013; Hogg et al., 2013). Next best control exists for the last glacial cycle (past 100,000 years), 3034 

with strong constraints from ice-core chronologies from Greenland and the West Antarctic, 3035 

supported by U-series dated cave deposits, allowing comparisons between records with age 3036 

uncertainties of the order of at best 500 years (e.g., Shackleton et al., 2000; Grant et al., 2012; 3037 

WAIS Divide Project Members, 2015; Marino et al., 2015). In older levels still, down to half a million 3038 

years ago or so, combined application of U-series dated cave-deposits and astronomical time-3039 

scale tuning of exceptionally rhythmic sedimentation systems (like that in the Mediterranean) 3040 

provide a sound level of age control with uncertainties of the order of ± 1000 to 2000 years (Grant 3041 

et al., 2014). Targeted use of events, such as instantaneous volcanic ash deposits, can provide 3042 

selected intervals of improved control relative to the uncertainties stated above. But it is evident 3043 

that comparison between records is hindered to some extent by chronological control, which by 3044 

itself introduces an unavoidable portion of uncertainty in calculated paleoclimate sensitivity 3045 

estimates. 3046 
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The types of proxies used for estimating climate variables for cold periods over the last 800kyr are 3047 

mostly different from those used for the warm periods further back in time. This means that we 3048 

may expect uncertainties for these cold and warm periods, which we evaluate separately below, to 3049 

be largely independent. 3050 

 3051 

5.2 Evidence from cold periods: LGM and glacial-3052 

interglacial transitions 3053 

 3054 

Glacial-interglacial cycles of the Pleistocene (last 2.5 million years) are best known from the last 3055 

half million years. Over that time they were characterized by well documented CO2 fluctuations 3056 

between ~180 and ~280 ppm (Siegenthaler et al., 2005; we quote all gas concentrations by 3057 

volume), and methane fluctuations between ~350 and ~700 ppb (Loulergue et al., 2008). Sea-3058 

level/ice-volume fluctuations took place over a total range of about −130 to +10 m (e.g., Rohling et 3059 

al., 2009, 2014; Grant et al., 2014). 3060 

We focus mostly on the Last Glacial Maximum (LGM, between 19,000 and 23,000 years before 3061 

present) as it is the most recent quasi-stable cold period, and has been extensively studied. 3062 

Relative to other, earlier but similarly cold, glacial maxima there is a wealth of data available for the 3063 

LGM from both paleo-archives and modelling studies.  3064 

In this section, the focus is on summarizing our understanding of paleoclimates using information 3065 

from observations and modelling in order to derive priors on ΔF, and likelihoods for ΔT for different 3066 

intervals. For all temperature changes and forcings in this section, we use a Gaussian error 3067 

distribution, and give the uncertainty as one standard deviation, unless otherwise indicated.  3068 

 3069 

5.2.1 Surface temperature change ∆T 3070 

 3071 

Last Glacial to interglacial global mean temperature change estimates have been much studied 3072 

and remain debated. Across studies, the inferred range is between ~3 and ~7 K below pre-3073 

industrial with little probability of lying outside this range (MARGO, 2009; Annan and Hargreaves, 3074 

2013; Schmittner et al., 2011; Rohling et al., 2012; Hansen et al., 2007; Köhler et al., 2010; 3075 

Masson-Delmotte et al., 2010; Friedrich et al., 2016; Snyder, 2016a). We therefore take N(−5,1) as 3076 

our observational likelihood of the temperature change.  3077 

 3078 

5.2.2 Forcings contributing to ∆F 3079 

 3080 

Radiative forcing at the LGM consists of several components, and we describe the most significant 3081 

of these here. Note that changes in global annual mean orbital forcing are negligible (~0.1 W m−2), 3082 

although regional and seasonal changes range from −9 W m–2 to −3 W m−2 (Kageyama et al., 3083 

2017). Here we consider estimates from the literature, and estimate values for these forcings, in 3084 

order to calculate an overall best estimate for the total forcing. Some of the literature also provides 3085 

quantitative uncertainty estimates, which we use as an approximate guide, although finally we use 3086 

a somewhat larger value to reduce the possibility of overconfidence in our estimate. 3087 
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Lower GHG concentrations are well characterized for the LGM. Here we use the latest 3088 

PMIP4/CMIP6 LGM estimates of [CO2] = 190 ppm, [CH4] = 375 ppb and [N2O] = 200 ppb 3089 

(Kageyama et al., 2017). For the pre-industrial greenhouse gases, we use the CMIP6 estimates for 3090 

1850 (Meinshausen et al., 2017), [CO2] = 284 ppm, [CH4] = 808 ppb, and [N2O] = 273 ppb. The 3091 

forcing formulae from Etminan et al. (2016) translate these concentrations into CO2: −2.16 W m−2, 3092 

CH4: −0.37 W m−2, and N2O: −0.27 W m−2. However, in line with the discussion in section 3.2.1 we 3093 

increase the greenhouse gas forcings by 5% to account for the land warming effect (tropospheric 3094 

and surface albedo adjustments). They therefore become −2.27, −0.39 and −0.28 respectively. 3095 

Because the forcing due to a doubling of CO2, ∆F2xCO2, is considered uncertain in our analysis (with 3096 

a central estimate of 4.0 W m−2, see section 3.2.1), we represent the CO2 component of the forcing 3097 

as –2.27/4.0 = −0.57      ∆F2xCO2  in our calculation. We further increase the CH4 value by 45% to 3098 

−0.57 W m−2 to account for ozone and stratospheric water vapor effects (following Hansen et al 3099 

2005).  3100 

 3101 

Forcing from the large ice sheets, via albedo and elevation changes (lapse rate feedback) and the 3102 

concomitant drop in sea level, have been estimated at around −3.2 W m−2 by the IPCC AR4 3103 

(Hegerl et al., 2007) and −3.7 W m−2 ± 0.7 W m−2 in a review by Köhler et al. (2010). The single 3104 

model analysis of Friedrich et al. (2016) obtains a rather lower value of −1.6 W m−2 for the ice 3105 

sheet forcing, which they ascribe to the effect of cloud cover substantially masking the ice albedo 3106 

change. The climate models that participated in the second and third Paleoclimate Model 3107 

Intercomparison Projects (PMIP2 and PMIP3) have values from −2.6 to −3.5 W m−2 (PMIP2, 3108 

Braconnot et al., 2012) and from −3.6 to −5.2 W m−2 (PMIP3, Braconnot and Kageyama, 2015). 3109 

The different ice-sheet reconstruction used for PMIP2 and PMIP3 led to a difference in forcing of 3110 

about −1 Wm−2 (Abe-Ouchi et al., 2015). We represent this evidence with an estimate of −3.2 3111 

Wm−2 ± 0.7 Wm−2. 3112 

The radiative impact of changes in vegetation is estimated to be −1.1 ± 0.6 W m−2 (Köhler et al., 3113 

2010; Rohling et al., 2012; and references therein).  A variety of estimates have been made of the 3114 

forcing due to the glacial increase in atmospheric dust loadings, with a range of best estimates of 3115 

0.1 to −2.0 Wm−2  (Yue et al 2011; Takemura et al 2009; Albani et al 2014; Ohgaito et al., 2018; 3116 

Hopcroft et al., 2015; Mahowald et al., 2006; Köhler et al., 2010; Rohling et al., 2012; Claquin et al 3117 

2003). While some research suggests that models tend to overestimate the influence of dust 3118 

because of an inappropriate distribution of grain size and shape (Kok et al., 2017), we use a range 3119 

of −1.0±1 Wm−2 at one standard deviation in order to include the full range of published results with 3120 

a significant likelihood that the forcing is outside that range.  3121 

Having separated out the CO2 forcing as −0.57      ∆F2xCO2, the rest (∆F’) sums to −6.15 W m−2, 3122 

consisting of −3.2 W m−2 (ice sheet), −0.57 W m−2 (CH4), −0.28 W m−2 (N2O), −1.1 W m−2 3123 

(vegetation) and −1.0 Wm−2 (dust). Our maximum likelihood estimate for total forcing is therefore 3124 

−8.43 Wm−2. Köhler et al. (2010) also suggest that additional, less commonly discussed factors, 3125 

such as surface albedo change due to shelf exposure related to glacial sea-level lowering, bring 3126 

the total glacial–interglacial radiative forcing closer to −10 Wm−2. Models from PMIP2 suggest that 3127 

the albedo effect of exposed shelf is −0.7 to −1.3 W m−2 (Braconnot et al., 2012). Friedrich et al. 3128 

(2016) estimate a substantially weaker total forcing of −7.6 W m−2, largely due to weaker ice sheet 3129 

forcing, and Rohling et al. (2012) estimate −8 W m−2 (with a plausible range of −6.25 to −9.75 3130 

Wm−2). Combining in quadrature the uncertainty ranges provided by Köhler et al. (2010) for the 3131 

components of the forcing generates a nominal uncertainty of ±1.4 Wm−2. However this calculation 3132 

ignores nonlinearity in the addition of different forcings (for which there is limited evidence, but it 3133 

may be significant; e.g., Yoshimori et al., 2009), and also may not account fully for the range of 3134 

published estimates. To account for this, we use a somewhat larger overall uncertainty estimate of 3135 
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±2 W m−2 (1-sigma). In sum, we use N(−8.43, 2) W m−2 as our observational estimate of the forcing 3136 

change.  3137 

 3138 

5.2.3 Corrections for state-dependence of sensitivity and slowness of 3139 

equilibration 3140 

 3141 

A direct application of energy balance equation (     3) thus points to a moderate sensitivity of 3142 

around 2.4 K  having highest likelihood (i.e., 5 x 4.0 / 8.43; see dashed line in Fig.      15). 3143 

However, such a calculation rests on the assumption that feedbacks remain constant over a wide 3144 

range of climate states and forcings. This has been the approach generally taken in paleodata-3145 

based studies (Hansen et al., 2007; Köhler et al., 2010; Masson-Delmotte et al., 2010; 3146 

PALAEOSENS, 2012; Rohling et al., 2012; Martínez-Botí et al., 2015). However, it is increasingly 3147 

being questioned by studies concerned with potential state-dependence of paleoclimate sensitivity 3148 

(Zeebe, 2013; von der Heydt et al., 2014, 2016; Köhler et al., 2015; Friedrich et al., 2016; Rohling 3149 

et al., 2018; Stap et al., 2019). Several of these studies suggest that the relationship between 3150 

forcing and temperature response might not be linear, indicating that sensitivity depends on the 3151 

background climate state and/or the efficacy of the forcings. 3152 

Quantitative estimates of feedbacks through glacial cycles suggest that, for the LGM, the 3153 

difference due to the nonlinearity may be of the order 0.5 W m–2  K–1, both in models (Crucifix 2006; 3154 

Yoshimori et al., 2009; Yoshimori et al., 2011; IPCC, 2013) and in data from observations 3155 

(Friedrich et al., 2016; Köhler et al., 2015; Köhler et al., 2018), though there are large uncertainties 3156 

in these estimates. Most analyses suggest stronger net feedback for glacial states (i.e., λ more 3157 

negative, implying a lower sensitivity), but even this is not certain. We parameterize this 3158 

uncertainty in feedback through an additive term which is linear with temperature change; i.e., the 3159 

local feedback at temperature anomaly ∆T is given by λ +α ΔT where α is an uncertain parameter 3160 

and λ is the feedback for the modern state. The total radiative anomaly relative to equilibrium 3161 

arising from a temperature anomaly of ΔT is then given by the integral of this varying feedback 3162 

which amounts to 𝜆 𝛥𝑇 + 𝛼/2 𝛥𝑇2. Based on the above references, we choose our prior for α to be 3163 

N(0.1, 0.1) which implies a mean change in feedback of −0.5 W m−2 K−1 at an estimated glacial 3164 

cooling of −5 K, with a likely range of 0 to −1 W m−2 K−1 and a significant chance of exceeding 3165 

these limits. 3166 

Additional to this non-constancy in feedback strength, we also account for uncertainty in relating 3167 

the quasi-equilibrium response to the regression-based (see section 2.1) estimate of S. Modelling 3168 

experiments (Rugenstein et al 2019a,b; and see section 2.1) suggest modest differences between 3169 

the long-term equilibrium sensitivity and our target S based on regression of an abrupt 4xCO2 3170 

simulation. We use the symbol ζ to represent this difference, with 1+ζ therefore being the ratio of 3171 

our target S to the long-term equilibrium (eq.      8). The mean value of 1+ζ is 1.06, arising from the 3172 

eight models for which these estimates are available, suggesting that sensitivity as inferred from 3173 

the quasi-equilibrium paleoclimate states considered here is slightly larger than the target S for this 3174 

assessment. Because this result is obtained from a small ensemble, we use a slightly inflated 3175 

uncertainty of 0.2 relative to the ensemble spread of 0.15. 3176 

We include these effects via modifications to the basic energy balance equation (     3), writing, 3177 

𝛥𝑇 =
−(−0.57 ∆𝐹2𝑥𝐶𝑂2 + 𝛥𝐹′)

𝜆
1+𝜁

+𝛼
2

𝛥𝑇
   (22     ), 3178 
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where the term αΔT/2 represents a state-dependence in the sensitivity, and 1+ζ represents the 3179 

transfer between the long-term quasi-equilibrium and the target  S. S may then be derived from 𝜆 3180 

via equation      (4). 3181 

The resulting likelihood is shown in Fig. 15     , plotted in terms of S. The maximum likelihood value 3182 

is at 2.5 K, dropping to about 0.1 at 1 K and 0.35 at 6 K (relative to our maximum likelihood value 3183 

of 1). 3184 

 3185 

5.2.4 Discussion 3186 

We now consider the consequences of low or high climate sensitivity for our understanding of the 3187 

Earth system. Low present-day sensitivity to CO2 would require some combination of low cooling at 3188 

the LGM (note, however, that there is little scope for the LGM temperature change to be less than 3189 

3 K because that is the value inferred from observations at low latitudes) and larger-than-estimated 3190 

forcing and/or large response to non-CO2 forcings, of which the ice-sheet albedo is dominant. A 3191 

larger than expected difference between our target S and the paleo equilibrium sensitivity (i.e., 3192 

large 1+ζ) would also make low S somewhat more likely. Total CO2 and other GHG forcing is well 3193 

constrained at just under −3 Wm−2 at the LGM, and modelled responses to such forcing are close 3194 

to linear when other boundary conditions are held fixed (i.e. pre-industrial ice sheets, etc.) (Hansen 3195 

et al., 2005). A low climate sensitivity of, say, 1 K per CO2 doubling together with a true 3196 

temperature anomaly of −3 K (at the very low end of the observed range) would require a very 3197 

large additional radiative forcing effect of ice sheets (around −8 Wm−2) to generate the additional 3198 

2K or more of cooling. While few detailed factor analyses have been performed, estimates of the 3199 

radiative effect of the continental ice sheets are typically of the order −2 to −4 Wm−2 (e.g., Köhler et 3200 

al., 2010; Köhler et al., 2015); i.e., at least a factor of two less than would be required to support a 3201 

low climate sensitivity. Furthermore, models do not tend to exhibit such a strong response to ice 3202 

sheets; instead they suggest that—if anything—the total effect of multiple forcings is generally 3203 

smaller than the linear sum of responses to forcings individually (Yoshimori et al., 2009; Pausata et 3204 

al., 2011; Shakun, 2017). These arguments are consistent with our inferred low relative likelihood 3205 

of 0.2 at S = 1 (Figure 15     ).  3206 

High sensitivity to CO2 of around 6 K per CO2 doubling could be supported by a cooler LGM 3207 

temperature anomaly of around −7 K (the higher end of the range suggested from proxy-data 3208 

evaluations; e.g., Snyder, 2016a), together with a muted response to non-CO2 forcings and/or 3209 

substantial nonlinearity with respect to forcing magnitude (i.e., large values of α in equation 22     ). 3210 

Since CO2 alone would lead to a cooling of 4 K in this case, this would imply a limited (3 K) impact 3211 

of the ice sheets and other forcings (around −2Wm−2; less than half of what has been previously 3212 

estimated). This appears to be consistent with our likelihood of 0.3 for S = 6 K (Fig. 15     ). This 3213 

picture is supported by evidence that spans the most recent five glacial cycles (Rohling et al., 3214 

2012), and we do not have conflicting evidence from other cold periods. Further back in time, 3215 

uncertainties are greater as the data are substantially poorer; prior to the Pleistocene we have to 3216 

go back 280 million years to find a period when Earth’s temperature was much colder than pre-3217 

industrial (Royer et al., 2004; Montañez and Poulsen, 2013).  3218 

We note that the climate models included in the second and third Paleoclimate Model 3219 

Intercomparison Projects (PMIP2 and PMIP3) had climate sensitivities in the range of around 2-5 3220 

K. Emergent constraint analyses have found at best a weak relationship between the cooling 3221 

exhibited in each simulation and the equilibrium sensitivity of the models (Hargreaves et al., 2012; 3222 

Masson-Delmotte et al., 2013; Hopcroft and Valdes, 2015), due to model uncertainty in processes 3223 
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that are important for the LGM but not related to future climate change, such as the influence of the 3224 

ice sheets (Crucifix, 2006; Hopcroft and Valdes, 2015). All of these models lie in the high likelihood 3225 

region of our main result and we therefore do not expect to be able to discriminate strongly 3226 

between them. 3227 

5.3 Evidence from warm periods 3228 

5.3.1 Warm periods—mid-Pliocene:  3229 

The mid-Pliocene warm period (mPWP) occurred over the interval of 3.3-3.0 million years ago, and 3230 

is the most recent time in the past when CO2 concentrations are thought to have been high enough 3231 

to be comparable to present-day values. During this time, there were orbital cycles with periods of 3232 

40,000 years, during which CO2 levels inferred from high-resolution boron isotope data varied 3233 

between ~300 and ~400 ppmv (e.g., Martínez-Botí et al., 2015), and sea level fluctuated by about 3234 

30 m (Rohling et al., 2014). Other CO2 proxies are less conclusive, partly because they have not 3235 

yet been measured in sufficient resolution to distinguish individual orbital cycles (Dyez et al., 3236 

2018). Despite progress in recent years, both the GHG forcing and the global temperature 3237 

response during the mPWP warm intervals remain uncertain. Here we analyze the mPWP, in order 3238 

to provide inputs to equation (     3), in a similar way to the LGM analysis above. 3239 

 3240 

5.3.1a Surface temperature change ∆T 3241 

 3242 

Following initial global assessments (Haywood et al., 2010), where SSTs were judged to be higher 3243 

than Holocene values by about 0.8 K in the tropics, rising to 1.7 K globally, Pliocene SSTs have 3244 

been considerably revised to higher values, particularly in the tropics (e.g. Zhang et al., 2014; 3245 

O’Brien et al., 2014). Compilations that focus on the more reliable geochemical proxies now place 3246 

mean tropical SST during warm intervals of the Pliocene at +1.5 K, relative to the Holocene 3247 

(Herbert et al., 2010). Further refinements are likely to push this estimate even higher (e.g. O’Brien 3248 

et al., 2014; DeNezio et al., 2009). The compilation of Rohling et al. (2012) reveals that tropical 3249 

SST change is ~50% of the global mean change over the last 0.5 Myr, a value that is also 3250 

consistent with the PMIP3 ensemble at the LGM. Applying that to the mid Pliocene suggests a 3251 

mean global surface air temperature increase of around 3K relative to the Holocene (although this 3252 

value still has substantial uncertainty, and we therefore represent our temperature likelihood as 3253 

N(3, 1) K). 3254 

 3255 

5.3.1b Forcings contributing to ∆F 3256 

 3257 

Climate forcing during the mPWP is likely dominated by CO2, but other forcings must also be 3258 

considered, as for the LGM (i.e., Unger and Yue, 2013). There remains considerable uncertainty 3259 

regarding all GHG concentrations. PlioMIP, the Pliocene Model Intercomparison Project, assumed 3260 

a value of 405 ppm CO2, which is at the high end if considering CO2 alone, but which was chosen 3261 

to implicitly include the effect of other well-mixed GHGs.  3262 

To bracket most reported values we set a value of N(375, 25) ppm for CO2 and assume that N2O 3263 

and CH4 together represent an additional 40%± 10% of forcing (Hansen et al., 2013; Martínez-Botí  3264 

et al., 2015; Sosdian et al., 2018), which results in a best estimate for total forcing of 2.2 W m−2 3265 
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with an uncertainty of 0.6 W m−2 at one standard deviation (not precisely Gaussian), relative to the 3266 

284 ppm pre-industrial state due to well-mixed GHGs.  3267 

Since our aim is to estimate the short-term response due to carbon dioxide change, we need to 3268 

consider the influence of other forcings. In other words we need to consider the difference between 3269 

the Earth System Sensitivity (ESS, see section 2.1) and S. If the forcings were individually well 3270 

known then we could do this directly by including them in the energy balance equation as we did 3271 

for the LGM. However, forcings such as changes in ice sheets and vegetation are difficult to 3272 

quantify in detail, and tectonic and/or orographic forcings relative to the present complicate the 3273 

assumption that all feedbacks were driven by CO2 change (Lunt et al, 2010). For example, 3274 

uncertainties remain with respect to the overall sizes and temporal variability of ice sheets. With 3275 

Pliocene sea level at least 6m above the present (Dutton et al., 2015), we know that ice sheets 3276 

were smaller, but the upper boundary for sea level remains unclear (Dutton et al., 2015) as does 3277 

the Pliocene glacial-interglacial amplitude variability (Naish et al., 2009; de Boer et al., 2010; Miller 3278 

et al., 2012; Rohling et al., 2014; Stap et al., 2016). Overall, sea-level estimates (as available at 3279 

the time of study) at times with ~375 ppm CO2 reveal a median at +21 m and asymmetrical 68% 3280 

and 95% probability envelopes of 9-27 m and 1-33 m, respectively (Foster and Rohling, 2013). In 3281 

addition, the "time slab" approach used in PlioMIP (where data from warm intervals within the 3282 

longer period are amalgamated to form a single climatology) introduces further uncertainties, for 3283 

example, regarding the regional influence of orbital changes. These are in the process of being 3284 

quantified more carefully (Haywood et al., 2016; Dowsett et al., 2016) and time series approaches 3285 

similar to those developed for the last 800 kyr are also beginning to be applied to the mPWP (e.g., 3286 

Martínez-Botí et al., 2015). 3287 

Since we do not have accurate estimates of the ice sheet and vegetation forcings, we instead use 3288 

an uncertain parameter to represent the amount by which these (generally slower) responses 3289 

inflate the response that would be generated by CO2 alone. Lunt et al (2010) argue that this ratio 3290 

ESS/S is around 1.4 for the Pliocene based on simulations using HadCM3, while Haywood et al 3291 

(2013) find an ensemble mean ratio of 1.5 with considerable variation between models but with a 3292 

total range of of 1 to 2 across the models in the PlioMIP1 ensemble. We represent these results 3293 

with an ESS inflation factor  1+ fESS where  fESS  is distributed as N(0.5, 0.25).  3294 

We thus represent the energy balance of the climate system for the Pliocene as 3295 

𝛥𝑇 =
−𝛥𝐹𝐶𝑂2 (1+𝑓𝐶𝐻4) (1+𝑓𝐸𝑆𝑆)

𝜆
(1+𝜁)

      (5.2) 3296 

where 𝛥F(CO2) is the forcing due to CO2 (i.e., ln([CO2]/284)/ln(2) ×𝛥F2xCO2), 1+fCH4 is the additional 3297 

forcing due to methane and N2O, which equals (1+N(0.4, 0.1)), and 1+ζ represents the transfer 3298 

between quasi-equilibrium and regression estimate of feedback. 3299 

The resulting likelihood is shown in Figure 16      and has a maximum likelihood S of around 3.2 K. 3300 

 3301 

5.3.1c Discussion 3302 

 3303 

As in section 3.2.4, we now consider storylines that could explain low and high values for the 3304 

sensitivity. A low climate sensitivity would require some combination of lower temperature change 3305 

and/or greater response to non-GHG/non-CO2 forcing.  An mPWP global mean warming of 1 K 3306 

would suggest a sensitivity of about 1.2 K per CO2 doubling, but this requires that we ignore the 3307 

known low-temperature bias of some paleo-thermometers (e.g., O’Brien et al., 2015). This is a low-3308 
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likelihood scenario, although uncertainties in orbital forcing influences make it hard to be sure. Our 3309 

calculation as presented in Figure 16      gives a likelihood of 0.3 at S = 1.2 K per CO2 doubling.   3310 

On the other hand, if the GHG forcing were lower than recent estimates (e.g., Martínez-Botí et al., 3311 

2015), then a high sensitivity is quite easily reconciled with the data. For example, the lowest CO2 3312 

estimates within the mPWP reach as low as 330 to 350 ppm (Pagani et al., 2010; Martínez-Botí et 3313 

al., 2015; Dyez et al., 2018). Relative to pre-industrial conditions, 350 ppm (with associated 3314 

changes in CH4 and N2O) only represents 1.7 W m−2. For that value, 2 K warming would imply a 3315 

sensitivity of nearly 4.5 K per CO2 doubling, and 3 K would suggest a sensitivity of ~6.5 K per CO2 3316 

doubling. If the CO2 forcing were as small as 330 ppm, these values would shift to 6 K and 9 K, 3317 

respectively. Such a low forcing is considered unlikely, and would require a minimal to non-existent 3318 

role for non-CO2 forcing during the mPWP. Our mPWP likelihood is around 0.4 at 6 K and drops to 3319 

0.2 at S = 8 K per CO2 doubling. 3320 

As was the case in section 4.1, some models have been used to perform simulations of the mPWP 3321 

as part of PMIP3 (PlioMIP) (Haywood et al., 2013). While all models generated plausible 3322 

simulations for this period, there is little discriminatory power to distinguish between them. This is 3323 

unsurprising given that their climate sensitivities range within the high likelihood range of our 3324 

analysis. Emergent constraints analyses have been performed using these models (Hargreaves et 3325 

al., 2016). While these suggest a climate sensitivity consistent with our results, we do not consider 3326 

them sufficiently robust to further narrow our likelihood, due to the high uncertainty in both model 3327 

boundary conditions and proxy data.   3328 

5.3.2 Warm periods—Paleocene-Eocene Thermal Maximum. 3329 

 3330 

Of the pre-Pliocene warm intervals, the rapid global warming event known as the Paleocene-3331 

Eocene Thermal Maximum (PETM; ~56 Ma) provides perhaps the best opportunity to further 3332 

constrain ECS. Here we explore this opportunity with a comprehensive analysis of the available 3333 

evidence arising from this period. Due to the large uncertainties and the danger of over-3334 

constraining the likelihood should these be under-estimated, however, we have chosen not to 3335 

include the PETM evidence in our final likelihood estimates. We present the analysis here both 3336 

because it provides supporting evidence to our overall conclusion, and in the hope that it may spur 3337 

future research. 3338 

Coincident with a dramatic input of biogenic carbon into the active climate system, warming 3339 

occurred rapidly (in <20 kyr, likely in as little as 4 or 5 kyr; Zeebe et al., 2016; Kirtland Turner et al., 3340 

2017). Dunkley Jones et al. (2013) compiled available SST data and, comparing these with results 3341 

from a single model, concluded that the global PETM temperature anomaly relative to the early 3342 

Eocene was in the range 4 to 5 K. Incorporating recent SST data from the tropics, Frieling et al 3343 

(2017) estimate a tropical change of 2.7 K with 5.3 K for the global SST anomaly (<2 K very 3344 

unlikely). Using a ratio for global SST to global temperature change of 0.9, based on the results 3345 

from an ensemble of models run for the Eocene Climatic Optimum (EECO ~50 Ma) (Lunt et al, 3346 

2013), this gives a slightly higher global temperature estimate of 5.9 K. This suggests a central 3347 

value around 5 K. Relative to the other paleo-intervals discussed in the previous sections, 3348 

relatively few PETM studies have estimated this global value, and uncertainty in the interpretation 3349 

of measurements from so deep in the paleo-record is high. Therefore, despite the closeness of the 3350 

estimates in the literature, our uncertainty in this global value is greater than the equivalent for the 3351 

other intervals considered in the previous sections. Here we use a range of N(5, 2) K which 3352 

includes the published values within the high likelihood range. 3353 
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While rapid in geological terms, the time scale for the PETM warming is still sufficiently long for a 3354 

quasi-equilibrium temperature response to the radiative forcing. The PETM is associated with a 3355 

global negative δ13C anomaly of around 3-4‰, which is indicative of an injection of a large amount 3356 

of biogenic carbon into the Earth system driving this warmth, either in the form of CO2, CH4, or 3357 

both. Although constraining the CO2 change across the PETM is an area of active research, a 3358 

number of first-order constraints can be formulated for our purposes, based on Earth System 3359 

Modelling of the δ13C anomaly and accounting for the response of the deep ocean carbonate 3360 

system, and the carbon isotopic composition of the likely carbon sources (e.g., Cui et al., 2011). 3361 

This gives a maximum CO2 change of 5× (from 800 to 4000 ppm; Cui et al., 2011) and a minimum 3362 

of 2× CO2 (1000 to 2000 ppm). More recent estimates, based on paleo-observations, are 3363 

consistent with this modelling approach, and suggest a change from about 900 ppm to between 3364 

1500 ppm and 4100 ppm (95% confidence range), with a central value of 2200 ppm (Gutjahr et al, 3365 

2017), or a change from about 700–1000 ppm to about 1400-3300 ppm (Schubert and Jahren, 3366 

2013). Here we model the increase in CO2 by assuming a baseline of 900ppm increasing to a 3367 

Gaussian defined as N(2400, 700) ppm. 3368 

A large uncertainty when using the PETM in this way concerns the magnitude of the change in CH4 3369 

concentration that is potentially associated with the event (e.g., Zeebe et al., 2009). In the absence 3370 

of firm current constraints on CH4 and N2O concentrations at the PETM, we again use a factor 3371 

applied to the CO2 forcing to account for this additional forcing. Large and sustained inputs of CH4 3372 

directly into the atmosphere have the potential to extend the lifetime of CH4 in the troposphere by 3373 

up to a factor of 4 (Schmidt and Shindell, 2003), so the impact of CH4 on PETM temperatures can 3374 

be larger than sometimes assumed. We therefore draw the scaling factor from N(0.4, 0.2), which is 3375 

consistent with our previous assumption for the mPWP but allows twice the uncertainty. 3376 

The PETM background climate state differs substantially from the present (for example, there are 3377 

major differences in paleogeography and the basic state is much warmer), leaving open the 3378 

possibility of substantial feedback differences between the PETM and the present including slow 3379 

“Earth system” feedbacks such as vegetation. We have little basis for making a quantitative 3380 

estimate for this, and therefore include additional uncertainty in the form of an additive term 𝛽 on 3381 

the net feedback of magnitude N(0, 0.5) W m–2 K–1, which has a similar magnitude to the term used 3382 

for the LGM, although in this case we do not suppose a direct relationship with the amount of 3383 

warming. The arbitrary nature of this choice, and the possibility that this component could be much 3384 

more significant, are the main reasons that we do not include the PETM result in the final summary 3385 

likelihood for S obtained from paleo-information.  3386 

The resulting equation for the PETM therefore has the form 3387 

𝛥𝑇 =
−𝑙𝑛(𝐶𝑂2/900)

𝑙𝑛(2)
 
𝛥𝐹2𝑥𝐶𝑂2 (1+𝑓𝐶𝐻4)

𝜆
(1+𝜁)

+𝛽
  (5.3) 3388 

where 𝛥F2xCO2, λ, fCH4, and 1+ζ are as before and 𝛽 is the additional state-dependence parameter.  3389 

 3390 

Our likelihood function is shown in Fig. 17     . 3391 

The nature of the proxies used to estimate the forcing and climate state at the PETM is very similar 3392 

to that of the proxies used for the mPWP; they are likely to share some errors and biases. For this 3393 

reason, we do not consider the PETM information to provide a new, fully independent line of 3394 

evidence. As a sensitivity test, we consider the case that the uncertainties in CO2 and temperature 3395 

for both periods are correlated at the 80% level. We also assume the same transfer function ζ. 3396 

Under these assumptions, the joint likelihood (Fig. 18     ) is shifted slightly to lower values than the 3397 
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result obtained in section 5.2.1 for the mPWP alone, with the high-value tail slightly narrower. This 3398 

calculation depends on some highly uncertain parameters for which we have had to make 3399 

somewhat arbitrary judgements, such as the importance of state dependence for the PETM. 3400 

Differentiating between state dependence in the radiative forcing, and in the feedbacks (Caballero 3401 

and Huber, 2013), could be an area of future progress. A recent modelling study found that 3402 

changes in geography, ice, and vegetation may have had large impacts at the Eocene (Baatsen et 3403 

al., 2019; Farnsworth et al., 2019). So, while the calculation shown here may be pessimistic, we 3404 

have no firm basis for asserting a higher level of independence and choose to omit the PETM 3405 

calculation from our overall result, while acknowledging that it does appear to add support to the 3406 

mPWP analysis.  3407 

 3408 

5.4. Combining constraints from warm and cold periods 3409 

 3410 

As outlined at the end of section 5, the uncertainties in the evidence that form the constraints 3411 

described in sections 5.1 and 5.2 above are substantially independent, because the ways in which 3412 

the greenhouse gas levels and estimated temperatures are calculated are not very related 3413 

(typically different measurements and proxies are used). There are some dependencies, however, 3414 

which are specifically accounted for. In particular, dependency arises through the parameters 3415 

∆F2xCO2 and ζ. Performing the Bayesian updating across the full vector of uncertain parameters 3416 

accounts for these dependencies. Tests show that these dependencies between our cold and 3417 

warm period uncertainties hardly affect our results because the uncertainties constitute only a 3418 

small part of the total uncertainty in our result. 3419 

 3420 

The final combined likelihood function including our evidence from both cold and warm states, and 3421 

including the dependencies, is shown in Fig. 19     . 3422 

 3423 

5.5 Summary 3424 

 3425 

Like the industrial-era warming trend (analyzed in section 4), climate changes that occurred 3426 

naturally during earlier epochs also depended on S, and can likewise constrain S if enough is 3427 

known about what drove them. We find that the two most informative time intervals are the Last 3428 

Glacial Maximum cold period (LGM, ~20,000 years ago) and the mid-Pliocene Warm Period 3429 

(mPWP, 3.3-3 Myr ago), although we have also considered previous glacial cycles, and especially 3430 

the Paleocene-Eocene Thermal Maximum warm period (PETM, ~56 Myr ago), to test for 3431 

consistency. The LGM and earlier glacial maxima were 3-7 K colder than the late Holocene (recent 3432 

pre-industrial millennia) because the Earth’s orbit favored climatic changes that included large ice 3433 

sheets in the Northern Hemisphere, increasing the planetary albedo, as well as greenhouse gas 3434 

drawdown (largely into the deep oceans). The mPWP was 1-5      K warmer than the Holocene 3435 

due to higher ambient greenhouse gas concentrations as well as smaller ice volume, and the 3436 

PETM was roughly 3-7      K warmer than the baseline Eocene climate due to a geologically rapid 3437 

release of greenhouse gases. Thus, each climate change we have examined had different 3438 

aspects, which helps to provide a more reliable constraint on S. The paleoclimate data come from 3439 

intervals where the climate was different to today, but fairly stable for several thousand years, 3440 

meaning that slow feedback processes need to be taken into account. By treating these slow 3441 

processes as forcings rather than feedbacks, we are able to make inferences about S. Both the 3442 
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temperature changes that are used, and the slow feedback influences that are removed, are 3443 

constrained using indirect proxy records. This introduces considerable uncertainty in the climate 3444 

sensitivity estimates.  3445 

 3446 

Paleoclimate sensitivity estimates have been made with increasingly detailed documentation of 3447 

what’s included and what’s uncertain. For cold periods, estimates are predominantly (but not only) 3448 

from the period covered by the ice cores. The availability of ice-core data means that radiative 3449 

forcing estimates are well constrained (including CO2, CH4 and—through a scaling based on 3450 

measurements in parts of the records—N2O, and aerosol dust). We summarize that the most likely 3451 

estimate for climate sensitivity for cold periods falls close to 2.5 K. Extreme estimates range from a 3452 

likelihood of about 0.1 at 1 K to a high-end likelihood of about 0.35 at 6 K. Here, the low extreme of 3453 

1 K assumes a glacial temperature anomaly of −3 K, relative to pre-industrial times, which is the 3454 

lowest-     magnitude end of estimates available. It also requires a very large radiative forcing 3455 

effect of ice sheets that is some 2 to 4 times larger than typical reconstructions; climate models 3456 

also do not exhibit such a strong response to ice sheets. So the low extreme of 1 K is highly 3457 

unlikely. At the high end, 6 K assumes a glacial temperature anomaly of −7 K, relative to pre-3458 

industrial times, which is at the extreme end of estimates available. It also requires a radiative 3459 

forcing effect of ice sheets that is less than half of the estimates in most studies. Hence, as high as 3460 

6 K is unlikely, although it has a slightly greater likelihood than the low extreme of 1 K. 3461 

 3462 

For past warm periods, we suggest a most likely S of 3.2 K, with extremes that range from about 1 3463 

to 8 K (likelihoods about 0.2 at each value). We can only give a range for the most likely estimate, 3464 

because of structural uncertainties that remain in mean global surface air temperature increase, in 3465 

non-CO2 greenhouse gas concentrations, and in global ice volume (sea level). More, and more 3466 

detailed, observational constraints are needed. Our low extreme estimate assumes that 3467 

temperature changes were at the low end of the published spectrum, and that there was a larger 3468 

than commonly anticipated impact of non-GHG/non-CO2 forcing. For our low extreme of about 1.2 3469 

K, we assumed that mid-Pliocene global mean warming was 1 K, which equates to the present-day 3470 

climate. Though unlikely given Pliocene paleoclimate evidence, this cannot be fully excluded. High 3471 

sensitivities require that mPWP CO2 levels were at the very low end of published estimates. If we 3472 

then assume that non-CO2 forcing was negligible, then we find an unlikely but not impossible high 3473 

extreme estimate for S of up to 10 K. Information from the PETM broadly supports the estimated 3474 

likelihood obtained using climate information from the Pliocene, but we consider the evidence too 3475 

uncertain for it to be included in the likelihood function.  3476 

 3477 

Since the dominant uncertainties for warm and cold periods are different (e.g., ice-sheet forcing 3478 

affects cold climates but not warm ones; greenhouse gases are poorly known for deeper time 3479 

warm climates but directly measured from ice cores for more recent cold climates), they provide a 3480 

tighter constraint in combination than separately, even though they are not wholly independent. 3481 

Together, they suggest that S is likely to fall within 1.5-5 K, with highest likelihood around 2.5 K. 3482 

These results are fairly similar to those obtained in the PALAEOSENS assessment 3483 

(PALAEOSENS, 2012). The paleoclimate evidence offers significant promise to constrain S 3484 

further. In particular, if LGM ice-sheet forcing and global temperature can be better constrained, 3485 

the cold-period evidence could further constrain the upper end of the current range. The PETM is 3486 

an active area of research and it may in future be possible to use evidence for this period with 3487 

more confidence to further constrain sensitivity. There is also a possibility in future of using 3488 

evidence from other intervals such as the Eocene and Miocene. Progress will depend equally on 3489 

further development of biogeochemical paleoclimate modelling to test interpretations of existing 3490 

proxy data, and on collection of more such data.  3491 
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 3492 

 3493 
 3494 

 3495 

6. Dependence between lines of evidence 3496 

 3497 
Combining evidence from multiple lines hinges on a crucial question: are they independent? Some 3498 

observation, assumption, model (or model component), or unknown influence on climate could 3499 

have influenced more than one line of evidence or its interpretation. Such mutual influences are 3500 

inevitable at some level, since all scientists communicate regularly and share views on the climate 3501 

system. What we are concerned with here is whether there are quantitatively significant co-3502 

dependencies across the major evidence lines, and what impact this might have on our results. A 3503 

pedagogical example was given in section 2.4.1, and each of sections 3-5 has already addressed 3504 

evidence co-dependencies within the individual, major lines (sections 3.6, 4.1.2, 5.3.2). 3505 

  3506 

Such co-dependencies may either increase or decrease uncertainty. For example, some 3507 

unaccounted-for factor might cause two lines of evidence to deviate in the same direction (e.g., 3508 

pushing both toward a lower apparent S), or alternatively push them in opposite directions. In the 3509 

former case, the true overall uncertainty is larger than if we ignored the co-dependency, while in 3510 

the latter case it is smaller. In this assessment we will simply ignore co-dependencies that appear 3511 

to be of the latter, “buffered” variety (a conservative strategy, which could lead us to overestimate 3512 

uncertainty). But the former, “reinforcing” co-dependencies require attention. 3513 

  3514 

We are not revisiting here the degree of uncertainty of any one line of evidence, but instead asking 3515 

whether, if one line of evidence for whatever reason points too low (or too high) in terms of S, this 3516 

affects the interpretation of the other lines. For more discussion of this issue and what is meant by 3517 

independence, see Annan and Hargreaves (2017). 3518 

  3519 

6.1 Use of GCMs 3520 

 3521 

An obvious suspect for co-dependent errors is our use of GCMs in various ways to interpret or 3522 

support all three lines of evidence. Over-reliance on these models is hence dangerous, especially 3523 

since the models may differ systematically from reality in important ways. 3524 

 3525 

Our use of them, however, arguably relies on different model aspects for each line of evidence. For 3526 

example, they help constrain feedbacks (section 3) and play a large role in quantifying the 3527 

historical “pattern effect” (section 4), but the former involves global-mean temperature sensitivity of 3528 

clouds and other variables, while the latter involves regional departures from the global mean. 3529 

These could be seen as orthogonal, and indeed appear to be uncorrelated in GCM ensembles 3530 

(see below); for example, regional SST changes depend strongly on ocean processes (e.g. Kostov 3531 

et al., 2018) while global feedbacks do not (Ringer et al., 2014). Moreover, both the feedbacks and 3532 

pattern-effect responses are supported by observations and process understanding. GCMs are 3533 

also used to estimate adjustments to paleo forcings, but again these involve aspects such as 3534 
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atmospheric responses to ice sheets and aerosol sources, which would be expected to depend on 3535 

different model processes from those relevant to the other lines. GCM climate sensitivities are not 3536 

directly used (although GCMs do help to constrain some of the feedbacks in section 3); in general, 3537 

these models are used to quantify corrections and secondary effects (and their uncertainties) 3538 

which were neglected in traditional studies. 3539 

 3540 

Nonetheless some of these “secondary effects” turn out to be large, and there are some potential 3541 

interdependencies between evidence lines, some of which do involve GCMs. These are now 3542 

examined. 3543 

 3544 

6.2 Potential co-dependencies 3545 

 3546 

The main potential co-dependencies we see are as follows. 3547 

  3548 

GCM model selection bias. Modelers and process experts are aware of the historical climate 3549 

record. GCM aerosol forcings might have been selected in order to match the observed warming 3550 

rate over the 20th century (e.g., Kiehl, 2007), and otherwise plausible models or feedbacks might 3551 

have been discarded because of perceived conflict with this warming rate, or aversion to a model’s 3552 

climate sensitivity being outside an accepted range. If so, any factor causing an error in Shist could 3553 

in principle have caused a same-signed error in the process estimates of S, i.e. a “reinforcing” 3554 

codependency. 3555 

 3556 

Our strategy for mitigating this is to rely on multiple lines of evidence in assessing the strength of 3557 

key feedbacks (section 3). We find that there is sufficient evidence from observations of present-3558 

day weather variations and climate variability, process models not used in climate simulations, and 3559 

observational tests of GCMs unrelated to historical warming, to support the process evidence and 3560 

likelihoods presented without relying on their ECS values (see section 6.1). Also, the historical 3561 

evidence (section 4) relies on ‘bottom up’ estimates of  aerosol forcing and does not use 3562 

constraints on forcing that arise from temperature trends over the historical record (see section 3563 

4.1.1). In addition, the historical record has been extensively investigated by detection and 3564 

attribution methods, which allow a change in feedback or forcing strength by rescaling the time-3565 

space pattern of response to best match the observed records. These results (see section 4.1.3) 3566 

support the inferences made from the overall warming and forcing trends. Therefore, the process 3567 

evidence may be considered essentially independent of the other two lines of evidence even if 3568 

climate model development has indeed suffered from selection biases. 3569 

  3570 

Transfer function / SST pattern error. Relating the apparent sensitivities (e.g. Shist) from 3571 

historical and paleoclimate changes to the target S requires GCMs. For the historical period this 3572 

involves mainly how models capture gradients of sea surface temperature from the tropical Indo-3573 

Pacific warm ocean to other regions, and their impact on cloud cover (section 4.2). There is 3574 

evidence that these gradients may have been stronger during cold, and weaker during warm 3575 

paleoclimates. The historical SST record meanwhile shows gradients within the tropics and mid-3576 

latitudes strengthening more than predicted by GCMs. Stronger gradients are expected to increase 3577 

the (negative) global net cloud radiative effect (see section 3.4) for a given global mean 3578 

temperature.  3579 

 3580 
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First, we consider the impact if this expected cloud sensitivity to warming patterns were wrong or 3581 

overestimated. Since the sensitivity causes us to infer S > Shist because of the “warm-getting-3582 

warmer” pattern in the historical record, an overestimated cloud sensitivity would imply an 3583 

overestimate of S. However during paleoclimate periods, where warm regions changed less than 3584 

cool regions, the same error could lead to an underestimate of S. We therefore find that co-3585 

dependency between paleo and historical evidence is “buffered”. Co-dependencies are also 3586 

possible whereby errors in cloud physics more generally could affect both the historical transfer 3587 

function and process understanding; however, given that there are a wide range of cloud feedback 3588 

behavior and transfer functions implied across GCMs, a co-dependency should appear as a 3589 

correlation between the two, but available evidence does not suggest a      correlation (Dong et al., 3590 

2020) although this merits further investigation     . So we conclude that uncertainty in the cloud 3591 

sensitivity to SST patterns is not an evident codependency concern. 3592 

  3593 

A more serious concern is misinterpretation of observed historical surface warming patterns and/or 3594 

incorrect expectations of forced patterns, which could affect historical and process evidence. The 3595 

calculations of the historical pattern effect (section 4.2.1) and low-cloud feedback (section 3.3.2) 3596 

both assume that long-term warming will be relatively uniform, as predicted by GCMs. However the 3597 

observed historical warming shows an increasing warm-cold gradient in the tropics which is not 3598 

fully predicted (section 4.2). The most likely explanations are an unforced variation, 3599 

underestimated lag effect of ocean thermal inertia, and/or response to volcanic forcing. Each of 3600 

these would be transient. However, there is evidence that a similar forced pattern could be missing 3601 

from GCMs due to mean-state biases (Kucharski et al., 2015), raising the possibility that the 3602 

residual historical warming is at least partly an equilibrium response to CO2 forcing (Luo et al., 3603 

2018, McGregor et al., 2018). If so this would imply a negative feedback mechanism missing from 3604 

current GCMs and process evidence generally (section 3). It would also mean that S is closer to 3605 

Shist, i.e., not as high as calculated assuming the observed historical pattern to be unforced. This is 3606 

a reinforcing co-dependency which introduces a one-sided uncertainty into both the process and 3607 

historical evidence, addressed further below. 3608 

  3609 

Aerosol forcing error. Although better recognized with respect to the historical record, aerosol 3610 

forcing uncertainty also affects the paleo evidence. Given that different aerosol types are involved 3611 

during each era and may have different cloud impacts, it may be expected that any aerosol forcing 3612 

errors are unrelated, in which case no co-dependency is expected. But to consider this possibility 3613 

anyway, if present-day anthropogenic aerosol negative forcing were weak relative to expectations, 3614 

S would be underestimated from historical evidence. However, since the LGM was much dustier 3615 

than the Holocene, a related situation for dust forcing would cause us to overestimate S from paleo 3616 

evidence. Hence, even if the errors were related they would tend to compensate if the two 3617 

estimates are combined (referred to here as “buffering”). If instead pre-industrial aerosol amounts 3618 

are underestimated then our historical-estimated S would be too high, yet with less vegetation-3619 

related aerosol during the sparsely vegetated LGM our paleo-estimated S would be too low. Thus, 3620 

the errors will again tend to compensate if the two are combined.  3621 

  3622 

Due to the complexity of aerosols and their effects, one cannot be sure about buffering. Therefore, 3623 

we have done calculations (section 6.3 below) of the impact of co-dependency for extreme cases 3624 

of fully co-dependent, vs. anti-dependent, effects. This follows the methodology of Annan and 3625 

Hargreaves (2017), but uses a more appropriate two-layer climate model for the historical period. 3626 

We find that the posterior PDF is only modestly affected even in these extreme cases. We thus 3627 

conclude that it is safe to set aside major concerns about co-dependency of the aerosol 3628 

uncertainties. 3629 
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  3630 

CO2 radiative forcing error. There is some uncertainty in the radiative forcing per doubling of 3631 

CO2, ∆F2xCO2           (section 3.2.1). If ∆F2xCO2 is higher than the best estimate, then the true S will 3632 

be proportionately higher, since all process evidence is referenced to radiative flux variations 3633 

rather than CO2 changes, while S is defined based on CO2 change. For other lines of evidence, an 3634 

impact is also expected but it depends on the relative magnitude and direction of the CO2 vs. non-3635 

CO2 forcings, since the contribution of CO2 increases with ∆F2xCO2: for historical warming (where 3636 

CO2 and non-CO2 forcings oppose each other) a high ∆F2xCO2 would push net forcing higher, thus 3637 

historical-estimated S lower, while for prehistoric changes (where other forcings reinforce CO2) this 3638 

would push paleo-estimated S higher. Because of the buffering of effects between the historical 3639 

and paleo periods, and since the uncertainty in CO2 forcing is relatively small, we ignore this 3640 

codependency. 3641 

  3642 

It could be argued that the above scenarios only deal with uncertainties we know about, but that 3643 

some major oversight, invisible phenomenon, or structural error in how the problem is formulated 3644 

could also affect multiple lines of evidence. It is however difficult to deal with such “unknown 3645 

unknowns” without concrete proposals for particular problems whose possible impacts can be 3646 

explored rationally. In trying to consider plausible candidates on the process side—very strong and 3647 

unanticipated feedback from low or high clouds being the only candidates that seem physically 3648 

able to deliver large feedbacks—it is difficult to see how a strong feedback would fail to have 3649 

registered in either of the other lines of evidence, unless some second, unrelated surprise 3650 

coincidentally canceled it out. Such multiple surprises are already catered for by considering the 3651 

evidence to be independent, as long as each surprise has been allowed for properly via the tails in 3652 

the respective likelihoods (see also section 7.3). Possible medium-term Earth-system responses, 3653 

such as a forest dieback, could fail to register in either historical or process understanding, but 3654 

would not appear to deliver a large enough feedback for this dependency to significantly affect 3655 

matters. Very slow responses and non-linearities would affect only the paleo evidence and were 3656 

accounted for there. 3657 

 3658 

6.3 Simple dependence test 3659 

  3660 

Since we did find a possible reinforcing co-dependency between the process and historical 3661 

evidence associated with the pattern effect, we modelled its effect using a simplified calculation in 3662 

which the historical and process likelihoods vs. λ are approximated as Gaussians that each include 3663 

a distinct, unshared error component, and a shared error component from the pattern effect.  We 3664 

suppose here that half the variance in historical ∆λ (0.32 from section 4) arises from uncertainty in 3665 

the forced SST pattern, which would also affect the evolution of cloud feedbacks; the other half is 3666 

from uncertainty in the radiative response to a known pattern (accounted for separately in the 3667 

process analysis). This leads to a shared error component of N(0, 0.21). The baseline process 3668 

distribution, N(−1.30, 0.44) from Table      1, therefore includes this plus an unshared component 3669 

N(−1.30, 0.39) and the historical likelihood, approximated as N(−1.07, 0.55), includes this plus an 3670 

unshared component N(−1.07, 0.51).  The two total λ likelihoods can be combined either assuming 3671 

them to be independent, or assuming the unshared components to be independent but the 3672 

corrections to be duplicated. The PDF of S (based on the process and historical evidence only) 3673 

has a 90% range of 2.2-6.9 K in the first case, widening to 2.1-7.4 K in the second case.  In other 3674 

words, the co-dependency has a fairly small effect on the final result, at least if approached in this 3675 

way. The basic reason for this is that the shared error variance, 0.04 (W m−2 K−1)2, is six times 3676 
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smaller than that of the unshared historical error and three times smaller than that of the unshared 3677 

process error.  Therefore the pooled uncertainty is dominated by the unshared components. 3678 

Nonetheless this dependency may deserve further attention especially if other uncertainties (e.g., 3679 

in aerosol forcing) are significantly narrowed.  3680 

 3681 

6.4 Summary 3682 

 3683 

We judge that for the most part, the three lines of evidence appear to be practically independent in 3684 

the sense that any significant errors we can envisage would affect the lines differently. We do 3685 

however find one important uncertainty for which this is not the case, related to “pattern effects.” If 3686 

CO2 forcing happens to produce more warm-region warming than expected, this would potentially 3687 

affect both historical and process-based estimates of S in the same sense. Idealized calculations 3688 

(section 6.3) indicate that allowing even for this relatively strong co-dependency does not strongly 3689 

affect a combined PDF. In our subsequent analysis we will therefore proceed with a baseline 3690 

approach of considering the three main lines of evidence to be independent.  However, given that 3691 

the possibility of major, unexpected dependencies can never be ruled out, we also explore 3692 

possible impacts of this using more drastic tests where single lines of evidence are discarded 3693 

altogether (section 7.3). 3694 

 3695 

  3696 
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7. Quantitative Synthesis of Evidence for 3697 

S 3698 

 3699 
Here we present results from the Bayesian approach described in section 2 to produce quantitative 3700 

estimates of the probability distribution for S given the evidence presented in the previous sections.  3701 

This builds on many previous studies (e.g., Annan and Hargreaves, 2006, Hegerl et al., 2006; 3702 

Stevens et al., 2016).   3703 

 3704 

First, we present the results of a “Baseline” calculation. This calculation is the synthesis of our 3705 

basic assumptions as outlined in the previous sections, and is not primarily intended to represent a 3706 

best or consensus estimate. It is, however, based on transparent assumptions, the sensitivity to 3707 

which can be tested in a relatively straightforward way. In following sections we assess the 3708 

sensitivity of the Baseline outcome to (a) the choice of prior, (b) the exclusion of each of the lines 3709 

of evidence in turn and (c) allowances for potential uncertainties not explicitly catered for 3710 

elsewhere in our calculations. These tests respectively explore: (a) the robustness of our results to 3711 

alternative formulations of prior beliefs as represented in the Bayesian approach; (b) the influence 3712 

of the different lines of evidence and how much of a constraint may be provided with only two 3713 

independent lines; and (c) how much additional uncertainty a researcher would have to have in 3714 

order for their uncertainty to significantly influence the results. These sensitivity tests inform the 3715 

interpretation of our results in section 8, based in part on the ‘storylines’ approach of Stevens et al. 3716 

(2016) (SSBW16). 3717 

 3718 

7.1. Baseline calculation 3719 

 3720 

 3721 
Figure 20      shows our Baseline calculation of the posterior PDF for S, and how the lines of 3722 

evidence contribute to it. The PDF for S is calculated by sampling from a uniform prior on feedback 3723 

components and performing a Bayesian update using evidence likelihoods from individual 3724 

feedback components (section 3), historical evidence (section 4) and evidence from warm and cold 3725 

paleoclimates (section 5). The Emergent Constraint evidence from section 3 is not included in the 3726 

Baseline calculation. Likelihood weights for each line of evidence are multiplied, based on the 3727 

assumption that the lines of evidence are independent (see section 2 for details). The 66% (17-3728 

83%) range for S, given all lines of evidence included, is 2.6-3.9 K with a median of 3.1 K. The 3729 

90% (5-95%) range is 2.3-4.7 K. 3730 

 3731 

Figure 20     b shows marginal likelihood functions for S from the various lines of evidence. The 3732 

process likelihood depends on the prior (section 2), and is calculated using the default uniform λ 3733 

prior used for the Baseline calculation. These likelihoods give one indication of the relative 3734 

effectiveness of the various lines of evidence in constraining S.  The values of these likelihoods at 3735 

the vertical grey lines indicate the relative strength of the corresponding evidence in constraining 3736 

the 17th and 83rd percentile values (66% range) of the posterior PDF of S, with a smaller 3737 

likelihood indicating a stronger constraint. The strongest constraint at the upper end of the S range 3738 

arises from the paleoclimate evidence (mainly due to that from cold climates), with a weaker 3739 

constraint from the process evidence and the weakest constraint arising from the historical 3740 

evidence.  The strongest constraint at the lower end of the range arises from the historical 3741 
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evidence, with the process evidence and warm paleoclimate evidence giving      weaker 3742 

constraints, and the cold paleoclimate evidence providing the weakest constraint. 3743 

 3744 

A limitation of comparing marginal likelihoods as above is that, unlike the historical and paleo 3745 

evidence, the process evidence (based on feedback components) cannot be uniquely expressed 3746 

as a function of λ and ∆F2xCO2 (see section 2).  This makes the marginal likelihood dependent on 3747 

the Bayesian prior on the individual feedback variables.  An alternative approach is to compare the 3748 

predicted PDF of S based on the process understanding combined with a uniform λ prior with the 3749 

marginal likelihoods of the historical and paleo evidence (cf. eq. 10); this is done in Fig. 20     a 3750 

(note that for plotting consistency the historical and paleo evidence is shown as PDFs under 3751 

uniform-S priors, preserving the shape of the likelihoods). 3752 

 3753 

Multiple PDFs (or likelihoods) based on different sources of information are not necessarily 3754 

expected to match, only to overlap. In our case there is substantial overlap between the lines of 3755 

evidence, whether regarded in terms of likelihood functions (Fig. 20     b) or PDFs obtained as in 3756 

Fig. 20     a, and maximum likelihood values are all fairly close. This indicates strong consistency 3757 

among the three lines of evidence. The tails of the likelihoods and PDFs are different, however, 3758 

which indicates variation in the strength of the constraints.   3759 

 3760 

Our Baseline calculation above is based on one particular prior, assumes independence between 3761 

lines of evidence, and makes no allowances for ‘unknown unknowns.’  We therefore perform a 3762 

number of sensitivity tests to explore these limitations, to allow for the possibility that our Baseline 3763 

range for S is over confident. 3764 

7.2. Sensitivity to priors 3765 

 3766 

We now consider different prior distributions, and discuss the alternative perspectives that these 3767 

priors may represent.  3768 

 3769 

As discussed in section 2, we place priors on all independent variables of our inference model, 3770 

including the six feedbacks λi, and these induce a prior predictive distribution (PPD) on each 3771 

dependent variable including S. The PPD of S indicates what its posterior PDF would be, given the 3772 

inference model and priors, before any subsequent updating with evidence likelihoods. As such, 3773 

the PPD for S can be a useful tool for understanding the influence of the prior on the predicted 3774 

variables for a given inference model.   3775 

 3776 

Our Baseline calculation places independent, uniform priors on the λi feedbacks, as is implicitly 3777 

assumed in many past studies of these feedbacks (section 2.4.3).  Although we use uniform priors 3778 

on λi, other broad functions of λi yield similar results as long as the feedback priors are 3779 

independent. A prior with unbounded uniformly distributed λi feedbacks induces a PPD for λ which 3780 

is also unbounded and uniformly distributed (hence will be called ‘UL’).  This, given a reasonably 3781 

well-constrained value for ∆F2xCO2, results in a PPD for S that decreases with increasing S (Figure      3782 

21     b), because smaller and smaller changes in λ change S by a given amount as λ approaches 3783 

zero and S becomes large (Roe and Baker, 2007; Frame et al., 2005).  (Note however that for 3784 

practical reasons we place bounds on the λi feedback priors in our numerical calculations—see 3785 

section 2.4.4).  3786 

 3787 
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It may be argued that a uniform λ prior is undesirable since it assigns low probability density in the 3788 

PPD for S at high values of S from the outset, and it has been argued in previous studies (e.g., 3789 

Frame et al., 2005) that a state of ignorance about S is represented by considering a uniform prior 3790 

probability density of S (see section 4). Therefore we also consider an alternative prior that induces 3791 

an approximately uniform PPD on S, which we refer to as the uniform S prior (US) for brevity. 3792 

 3793 

Specifying a prior that is uniform in S is not straightforward in our inference model. There is no 3794 

unique way to choose priors on the feedbacks λi to yield any given PPD for S; there are many 3795 

possible joint feedback priors that yield a uniform PPD for S over some interval. Different such joint 3796 

priors over λi can induce different posterior PDFs on S, even though their induced PPD(S) is the 3797 

same. The specific case of a uniform PPD on S implies that the feedbacks have a high probability 3798 

of summing to a relatively small value. Accordingly, any US prior must possess at least one of two 3799 

characteristics: it must either assume the uncertainties in the feedbacks to be anti-correlated, or 3800 

else assume that the individual feedbacks are likely to take extremely small values.  In the former 3801 

case, the feedbacks are likely to have a small sum because of a natural tendency to oppose one 3802 

another; in the latter case, because sufficiently small feedbacks will have a small sum.  Although 3803 

we experimented with both types of prior, we judged the latter, small-feedback type to be 3804 

unacceptable because it would assign an extremely small prior probability to the most likely values 3805 

of some of the feedback components (e.g., Planck, see section 3). We therefore limit further 3806 

consideration to US priors achieved by feedback anticorrelation.  3807 

  3808 

To construct a prior with a uniform PPD for S using the full inference model, we take the sample 3809 

from the Baseline UL prior and weight each sample instance according to its predictive value for S 3810 

in order to give a uniform PPD for S (see section 2.3). This approach is similar to that followed by 3811 

Aldrin et al. (2012) to construct a uniform prior for S when using an inference model with priors on 3812 

multiple variables.   Recalculation of the posterior PDF of S from all evidence using this prior gives 3813 

a 66% range of 2.8-4.5 K (Table 10     ). This shows that our final result with all evidence is 3814 

encouragingly stable to changes in prior; even with this quite drastic change in the prior and 3815 

corresponding PPD for S, the posterior PDF of S only changes by 0.2 K at the lower end and 0.6 K 3816 

at the upper end of the 66% range.  While other priors could be considered, the UL and US priors 3817 

appear to span the range of reasonable options for broad priors.  3818 

 3819 

This US prior does however have characteristics that some may find hard to justify. It requires 3820 

abandoning the presumption that feedbacks are a priori independent, instead assuming they are 3821 

anti-correlated or naturally compensate (in our prior sample, the prior correlation of any one λi 3822 

component with the sum of the other five is −0.83     ). While some feedbacks do indeed negatively 3823 

correlate (for example water vapor and lapse rate, see section 3.2.3), discovering this for some 3824 

feedbacks through process knowledge and evidence is not the same as assuming it beforehand 3825 

for all feedbacks. Doing so would imply that if knowledge is gained about one feedback (say, ice 3826 

albedo), one’s confidence in the other feedbacks (e.g., clouds) will automatically improve and best 3827 

estimates possibly shift, even though nothing was directly observed about the others, and we have 3828 

no evidence for such a link. It would also imply that uncertainty could become smaller when 3829 

feedbacks are summed, rather than larger as would normally be the case. There is no evident a 3830 

priori rationale for preferring this negative (compensating) correlation over a positive (reinforcing) 3831 

one—and allowing for a broad range of possible correlations of both directions and averaging the 3832 

results would produce an outcome very close to that with no correlation (our Baseline UL prior).  3833 

Previous work on feedbacks or using climate models has never, to our knowledge, treated 3834 

evidence in this way. 3835 

 3836 
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Note that our priors on λi feedbacks should not be considered comparable to priors used in 3837 

Bayesian studies (e.g., Johansson et al., 2015; Skeie et al., 2014, and others discussed in section 3838 

4) that do not explicitly consider individual feedback processes as evidence, and which take S or λ 3839 

as an independent variable, rather than λi which are the independent variables used here. In our 3840 

inference model, the process information and prior together play the same role as would the prior 3841 

in any study not treating process information about individual feedbacks as evidence (cf. eq.      3842 

10), and a good deal of this information is not new (e.g., the Planck response and lapse-rate/water-3843 

vapor feedbacks). Therefore such studies would in principle be expected to include some of our 3844 

process evidence in their prior, which should be considered if comparing assumptions here to 3845 

those used elsewhere.  3846 

7.3 Sensitivity to specification of evidence 3847 

 3848 
Here we test the sensitivity of our calculations to modifying the evidence as encoded in our 3849 

likelihood functions for S.  First, we exclude each line of evidence in turn from the Baseline 3850 

calculation.  These ‘leave-one-out’ calculations give an indication of the relative effectiveness of 3851 

the various lines of evidence in constraining S. Although we compared marginal likelihoods and 3852 

PDFs from individual lines of evidence compared with priors in section 7.1, the sensitivity tests 3853 

shown here may be considered more relevant to identifying the impacts of individual lines of 3854 

evidence on the posterior PDF in a context where the majority of evidence is being applied. The 3855 

results are summarized in Table 10      and Figure 22      (see UL No Process, UL No Historical, 3856 

UL No Paleo Warm and UL No Paleo Cold). Comparing the results of the different leave-one-out 3857 

tests confirms the relative strengths of the constraints of the individual lines of evidence on the 3858 

upper and lower bounds for S reported in section 7.1 (see Figure 20     ).   3859 

 3860 

We also show the impact of removing the process evidence under a uniform Prior for S (US No 3861 

Process).  This mimics some past studies that did not use process understanding and expressed a 3862 

uniform prior on S; it therefore considers the situation where one views the process understanding 3863 

(including a UL prior and the structural understanding of eq. (     5) as a process model replacing a 3864 

uniform-S prior (see US No Process BU, Table 7.1, Figure 22     ; and Fig. 20     b).  This results in 3865 

higher sensitivities than UL No Process BU, such that if one considers the removal of this process 3866 

model and replacement with uniform-S, the process model is found to exert a stronger constraint at 3867 

the high end but less at the low end, compared to the conclusions if one discards only the process 3868 

evidence but still maintains a consistent UL prior.   3869 

 3870 

In addition we explore the possibility that our Baseline range for S may be over-confident due to 3871 

limitations in our treatment of the various lines of evidence. The Bayesian approach is by its very 3872 

nature subjective, and our inference model (or some other analysis choice) may have limitations 3873 

that potentially result in over-confident predictions.  Other researchers may make different 3874 

assumptions, and we would like to explore what range of results are at the edges of what we think 3875 

plausible.  Hence we use sensitivity tests to explore the consequences of possible alternative 3876 

assumptions. For further discussion of the limitations of our approach, see section 7.5 below.  3877 

 3878 

First we revisit the ‘leave-one-out’ calculations, which may also be considered as worst-case 3879 

explorations of what our results would look like if a line of evidence were for some reason 3880 

substantially compromised, or not accepted by some readers, or highly co-dependent with another 3881 

evidence line in some way unrecognized in our analysis.  As such these can be used to place 3882 
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generous upper bounds on the impacts of uncertainties in individual lines of evidence on our 3883 

posterior PDF for S.   3884 

 3885 

Excluding the process evidence from the Baseline calculation increases the 66% posterior range 3886 

for S from 2.6-3.9 K to 2.4-4.1 K, and the 5-95% range from 2.3-4.7 K to 2.0-5.2 K.  Excluding the 3887 

process evidence from the calculation with the uniform S prior has a larger effect, increasing the 3888 

66% and 5-95% ranges to 2.8-5.2 K and 2.3-6.9 K respectively.  Hence the upper tail of the 3889 

distribution is not robustly constrained by historical and paleoclimate information combined alone, 3890 

as the resulting constraint depends strongly on the prior. Nevertheless, even then sensitivities 3891 

beyond 5.9 K are estimated to have < 10% probability, yielding a similar upper bound to the IPCC 3892 

AR5 assessment, which estimated the probability of sensitivities above 6 K as ‘very unlikely’, i.e. 3893 

<10%. 3894 

 3895 

These are very extreme sensitivity tests; for them to be considered reasonable, new evidence 3896 

would need to come to light that would justify complete dismissal of all of the multiple elements of 3897 

the process evidence (and hence much of our physical understanding of the climate system).  3898 

Since this is a very extreme scenario, we do not consider the ‘No-Process’ case to plausibly 3899 

represent the overall structural uncertainty. The strong sensitivity to removing the Process 3900 

evidence illustrates how important this line of evidence is to constraining the upper bounds on S, 3901 

under a uniform-S prior. 3902 

 3903 

The other leave-one-out tests may be considered less extreme in that they gauge the impact of 3904 

excluding individual sets of observations (historical, warm and cold paleoclimate) from the Baseline 3905 

calculation for S.  Excluding these lines of evidence from the Baseline calculation individually 3906 

reduces the 5th percentile by at most 0.3 K, to 2.0 K, and increases the 95th percentile value by at 3907 

most 0.4 K, to 5.1 K.  Although we consider it extremely unlikely that new information could ever 3908 

lead a future assessment to dismiss an entire line of evidence, it is conceivable that multiple lines 3909 

of evidence (including the process evidence) could weaken or be interdependent to a level which 3910 

has a similar-order effect on the range of S to the above (see Figure 24     ). The leave-one-out 3911 

tests also place a generous upper bound on the effects of dependencies between any two lines of 3912 

evidence, given that removing one line of evidence in a pair will remove the effect of dependencies 3913 

between that pair but also removes the independent contribution of that line of evidence. 3914 

 3915 

The Baseline calculation does not include any evidence arising from emergent constraints based 3916 

upon present-day climate observations (see discussion in section 3.6). In addition to the above 3917 

sensitivity tests, we test the impact of adding this line of evidence to the Baseline calculation (see 3918 

UL + Emergent Constraints in Table 10      and Figure 21     ). This shifts the 66% range from 2.6-3919 

3.9 K to 2.7-4.0 K and the 5-95% range from 2.3-4.7 K to 2.4-4.8 K.  The shift upward of 0.1 K is 3920 

consistent with the higher S suggested by this evidence, and demonstrates the potential for future 3921 

revisions to our assessment of the evidence to improve our estimate of S. However its impact is 3922 

small, and is bounded by the selected leave-one-out tests above. This reflects the relatively low 3923 

confidence placed in this line of evidence and the fact that its maximum-likelihood S is not far from 3924 

that of the other evidence.  3925 

 3926 

Another potential limitation of our approach is that we assume Gaussian distributions for many 3927 

prior expert PDFs on independent variables. This does not allow for uncertainty in the assigned 3928 

means and standard deviations themselves. Accounting for this uncertainty by sampling from a 3929 

distribution of candidate standard deviation values would lead to a distribution with more kurtosis, 3930 

i.e., fatter tails. Another way of looking at this is that Gaussians may express overconfidence in our 3931 
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ability to dismiss surprising values far from the most likely one, and may therefore not well 3932 

represent fully informed beliefs that are appropriately aware of structural uncertainty.  To address 3933 

this concern we include an additional sensitivity test in which we replace many of the Gaussian 3934 

evidence distributions with Student’s t-distributions with five degrees of freedom. (A t-distribution 3935 

formally results if the Gaussian parameters are being estimated empirically from a finite, unbiased 3936 

sample, see Gelman et al., 2013; although our distributions are arguably better viewed as expert 3937 

judgments, the t-distribution is still a useful generalization for our purposes). We perform this 3938 

replacement for variables where small samples, structural uncertainty or possible unrecognized 3939 

factors could be a significant concern. The choice of five degrees of freedom is motivated by the 3940 

historical pattern effect correction term Δλ, which is informed by the sample mean and standard 3941 

deviation of six GCM experiments. This is represented by the Gaussian N(-0.5, 0.3) in the Baseline 3942 

calculation. In our sensitivity test we replace this with a t-distribution with five degrees of freedom 3943 

and mean and scale parameters equal to the mean and standard deviation of the Gaussian 3944 

distribution respectively. This increases the standard deviation by 30% from 0.3 to 0.39.  The 3945 

resulting distribution has a 66% range of [–0.82,–0.18] which is very similar to that for the 3946 

Gaussian distribution ([–0.79,–0.21]), but has a 5-95% range of [–1.1,+0.1] which is 22% wider 3947 

than that from the Gaussian distribution ([–0.99,–0.01]). We apply the same procedure to fatten the 3948 

tails of the following other independent variables: the process evidence feedback likelihoods λi, the 3949 

adjusted forcing ∆F and state-dependence correction factor α for the paleoclimate cold periods, the 3950 

CO2 concentration and slow-feedback scaling fESS for the paleoclimate warm periods, and the ratio 3951 

(1+ζ) of ECS to S.  In each case the t-distribution gives a very similar 66% range to that of the 3952 

Gaussian distribution it replaces. We find that substituting these fat-tailed distributions for all of the 3953 

above into the Baseline calculation increases the width of the 66% range for S slightly from 2.6-3.9 3954 

K to 2.5-4.0 K, and increases the width of the 5-95% range a little more, from 2.3-4.7 K to 2.2-4.9 3955 

K. These wider ranges are already encompassed by our other plausible sensitivity tests described 3956 

above, indicating that our conclusions on the bounds of both ranges for S are reasonably robust to 3957 

structural uncertainty.   3958 

7.4 Implications for related sensitivity measures and 3959 

future warming 3960 

 3961 
Here we present results showing how S and its PDF map onto a few other related quantities of 3962 

interest. To relate these we must rely entirely on GCMs, which can predict S and the other 3963 

quantities.  3964 

 3965 

Via eq. (     8) and the PDF on ζ given in section 5.2.3, our calculation provides a simultaneous 3966 

calculation of the posterior PDF of ECS, which may be compared with that of S. For our Baseline 3967 

case the 5-95% (2.2-4.9 K) and 66% (2.6-4.1 K) ranges of ECS (Table 7.2) are slightly wider and 3968 

stretched higher than those for S (2.3-4.7 K and 2.6-3.9 K respectively). This is as expected from 3969 

the comparison shown in Fig.      1 and resulting distribution of ζ. There is only a modest increase 3970 

in the widths of the ECS PDFs compared to those for S, presumably because the paleo evidence 3971 

more directly constrains ECS, while other evidence more directly constrains S. Under our uniform-3972 

S prior, however, the 66% range for ECS (2.7-4.6 K) expands slightly compared to that for S (2.8-3973 

4.5 K) but does not shift upward, while the 5-95% range for ECS (2.3-5.6 K) is shifted slightly 3974 

towards lower values than for S (2.4-5.7 K) This counterintuitive result may be due to the a priori 3975 

correlation structure implicitly required to reconcile the physical model (section 2.2) with a uniform 3976 

prior probability of S: because ζ is uncertain, the strong expectation for high S expressed by this 3977 

prior (compared to that of the Baseline prior) combined with the evidentiary constraints against 3978 
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high S, implies that a posteriori ζ has a strong chance to be negative even though a priori it was 3979 

expected to be positive on average (remembering that, in a Bayesian analysis, the PDFs of all 3980 

variables are updated when evidence is considered). Because of this, the bounds from reasonable 3981 

sensitivity tests we obtain for ECS are slightly smaller than those for S. 3982 

 3983 

For other quantities (TCR and future warming), we obtained approximate PDFs from their fits to S, 3984 

broadened according to the sample spread about this fit. These fits were shown in Fig.      1; the 3985 

resulting PDFs of warming are shown in Fig. 23      for the Baseline case, and ranges are given in 3986 

Table 11      for other cases. As the relationship between the different climate sensitivity measures 3987 

is not well understood (e.g., AR4 Fig. 10.15; Frey et al., 2017; Grose et al., 2018), we choose 3988 

linear fits. These linear fits do not extrapolate through the origin for non-equilibrium scenarios, but 3989 

this is expected, as the fraction of warming that remains unrealized (at the end of century in the 3990 

case of the RCP’s, or time of doubling in the case of TCR) will vary with S. Within the range of 3991 

substantial probability of S, the relationships do not show any robust nonlinearity, so none is 3992 

accounted for.   3993 

 3994 

The 66% range we find for TCR (1.5–2.2 K in the Baseline calculation, and up to 2.4 K otherwise) 3995 

is much narrower than the IPCC AR5 likely range of 1.0–2.5 K. However our assessment of this 3996 

quantity is very limited and should be treated with considerable caution, as it comes largely from 3997 

sources of information more relevant to S (paleoclimate and atmospheric process evidence) which 3998 

is then converted to TCR using coupled climate models from AR5, rather than a bottom-up 3999 

assessment of TCR that properly accounts for our physical understanding, uncertainties in 4000 

transient processes (in particular, ocean processes), and historical changes on shorter time 4001 

horizons of greater relevance to TCR. A more thorough assessment of TCR is set aside for future 4002 

projects. 4003 

 4004 

For the Baseline case shown, the future-warming PDFs indicate that the probability that warming 4005 

relative to 1995 will exceed 1.4 K (roughly equivalent to 2 K above pre-industrial, Hawkins et a. 4006 

2017) by late this century is 17% under RCP2.6, 83% under RCP4.5, 92% under RCP6.0 and 4007 

>99% under RCP8.5. Note that while RCP8.5 has sometimes been presented as a “business as 4008 

usual” scenario, it is better viewed as a worst case (e.g., Hausfather and Peters, 2020). We make 4009 

no claims here on scenario probabilities, only on warming probabilities conditional on a broad 4010 

range of possible scenarios. 4011 

 4012 

 4013 

7.5 Limitations, caveats and potential future 4014 

approaches 4015 

 4016 

Our assessment has taken an ambitious approach which has for the first time attempted to model 4017 

the relationships between diverse lines of evidence (including feedback components and pattern 4018 

effects) with S in a consistent overarching inference model framework. This approach like any 4019 

other has its potential limitations, which will only become clearer in future work which develops the 4020 

approach.  Here we discuss various limitations of the statistical approach outlined here that could 4021 

potentially be improved in future work. 4022 

 4023 

First, in each section we have made those choices which we consider the most defensible, and 4024 

carried a single likelihood function for each line of evidence forward into the synthesis calculations.  4025 

In future work it could be possible to develop a range of plausible alternative likelihoods for each 4026 
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line of evidence and apply these as sensitivity tests in the synthesis. While we have tested the 4027 

effect of substituting symmetric fatter-tailed distributions for Gaussian distributions, future studies 4028 

could test the sensitivity to other changes, for example, skewed distributions. The statistical 4029 

models developed here are intended to codify the existing knowledge from the literature. Future 4030 

research should develop these models and it is quite likely that they may be re-parameterized and 4031 

may even be formulated in terms of other variables.  4032 

 4033 

Our treatment of possible dependencies across evidence lines was limited to use of ∆F2xCO2 4034 

throughout and some sensitivity tests around pattern effect dependence. Treatments for 4035 

dependencies are best addressed by modelling them directly within the inference model. This 4036 

could be taken further in future work, for instance by explicitly building in additional dependencies 4037 

between feedback components, forcings and feedbacks, or other quantities for which there is 4038 

evidence of dependence (e.g., see Annan and Hargreaves, 2017). In particular dependencies 4039 

arising from pattern effects could be modelled more carefully once better understood, and other 4040 

dependencies (including “buffered” ones) could be modelled. The dependence between forcing 4041 

and feedbacks remains poorly understood (section 3.4), and better understanding might suggest a 4042 

different approach to that taken here, although we don’t expect this to significantly affect results. 4043 

 4044 

Zelinka et al. (2020) show that the range in S increases from 2.1-4.7 K in CMIP5 to 1.8-5.6 K in 4045 

CMIP6. This demonstrates the importance of combining multiple lines of evidence, as GCMs alone 4046 

are not producing increasingly confident estimates. We have deliberately not used the range of S 4047 

values from climate models to directly inform our likelihoods, but climate models inevitably inform 4048 

our estimates, for example in the estimation of the pattern effect term in the historical likelihood, 4049 

some of the feedback subcomponents from the process evidence, and some of the paleo radiative 4050 

forcing estimates (see section 6.2). We have incorporated some new results from CMIP6, but 4051 

results from CMIP6 models on the strength of the pattern effect are not yet fully available. It is in 4052 

principle possible that our results could change, for example if new models predicted radically 4053 

different pattern effects, which could change our interpretation of evidence from the historical 4054 

period, or different feedbacks which are not strongly constrained by other evidence.  However, any 4055 

change in the range of S from a synthesis of all lines of evidence would be expected to be smaller 4056 

than the change in the model range alone.     4057 

 4058 

Finally, there are other possible choices that could be made for the synthesis methodology, or in 4059 

the use of alternative lines of evidence, and sometimes our reasons for choosing one over another 4060 

are based on very subjective judgements. Some of the difficult issues (arising around the 4061 

specifications of the priors for example) could potentially be addressed in future using statistical 4062 

simulation approaches.   4063 

 4064 

7.6 Summary 4065 

 4066 

Our Baseline calculation gives a 66% (17-83%) range for S of 2.6-3.9 K, and a 5-95% range of 2.3-4067 

4.7 K (grey line, Figure 24     ). This case includes all evidence considered in this report, except 4068 

the “emergent constraint” evidence, whose independence from other evidence is uncertain (section 4069 

3.6).  We consider the sensitivity tests where we individually remove the historical, cold or warm 4070 

paleoclimate evidence to bound any changes to these ranges that could plausibly occur due to 4071 

reasonable alternative interpretations of the evidence (see orange and blue lines on Figure 24     ).  4072 

These place bounds of 2.3 K and 4.1 K on the 66% range and 2.0 K and 5.1 K on the 5-95% range 4073 
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for S.  If we additionally include a sensitivity test where we substitute a uniform S prior into the 4074 

Baseline calculation, we obtain bounds of 2.3 and 4.5 K on the 66% range (see magenta line, 4075 

Figure 24     ) and 2.0 and 5.7 K on the 5-95% range for S.  Modifying the baseline calculation to 4076 

include the emergent constraint evidence or to assume fat tailed-distributions results in ranges 4077 

which are bounded by the above. 4078 

 4079 

All of our plausible alternate calculations for the PDF of S suggest a considerable narrowing of the 4080 

range compared to that assessed at the time of the AR5 (cyan line, Figure 24     ). This remains 4081 

true for the equilibrium climate sensitivity (ECS). A weaker constraint would be found if we 4082 

disregarded all process evidence, since in that case the resulting combined paleo and historical 4083 

PDF would be highly sensitive to prior information in the upper tail. Yet even the most generous 4084 

allowances for uncertainty result in a stronger constraint on S than that which was available at the 4085 

time of the AR5 assessment, indicating an advance in our assessment of the evidence for S. This 4086 

increased constraint comes almost entirely from bringing up the low end, rather than reducing the 4087 

high end.  4088 
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 4089 

8. Summary and Conclusions 4090 

 4091 

8.1 Considerations 4092 

 4093 
The objective of this work was to analyze all important evidence relevant to climate sensitivity, and 4094 

use that evidence to draw conclusions about the probabilities of various values of the sensitivity. In 4095 

so doing we have examined the interdependence of different lines of evidence and the possibility 4096 

that structural or other flaws in our understanding might affect conclusions or lead to 4097 

overconfidence. There are subjective elements to such an exercise, but there are also objective 4098 

ones—in particular, enforcing mathematical rules of probability to ensure that our beliefs about 4099 

climate sensitivity are internally consistent and consistent with our beliefs about the individual 4100 

pieces of evidence.  4101 

 4102 

All observational evidence must be interpreted using some type of model that relates underlying 4103 

quantities to observables, hence there is no such thing as a purely observational estimate of 4104 

climate sensitivity. Uncertainty associated with any evidence therefore comes from three sources: 4105 

observational uncertainty, potential model error, and unknown influences on the evidence such as 4106 

unpredictable variability (which may or may not be accounted for in one’s model). By comparing 4107 

past studies that used different models for interpreting similar evidence (see e.g., section 4.1), we 4108 

find that the additional uncertainty associated with the model itself is considerable compared with 4109 

the stated uncertainties typically obtained in such studies assuming one particular model. When 4110 

numerical global climate models (GCMs) are used to interpret evidence, they reveal deficiencies in 4111 

the much simpler models used traditionally—in particular the failure of these models to adequately 4112 

account for the effects of inhomogeneous warming. This insight is particularly important for the 4113 

historical temperature record (section 4.2), which is revealed by GCMs to be compatible with 4114 

higher climate sensitivities than previously inferred using simple models. In general, many 4115 

published studies appear to have overestimated the ability of a particular line of evidence to 4116 

constrain sensitivity, sometimes leading to contradictory conclusions (see section 4.1). When 4117 

additional uncertainties are accounted for, single lines of evidence can sometimes offer only 4118 

relatively weak constraints on the sensitivity. 4119 

 4120 

The effective sensitivity S analyzed here is defined based on the behavior during the first 150 4121 

years after a step change in forcing, which is chosen for several practical reasons explained in 4122 

section 2.1. While our study also addresses other measures of sensitivity (the Transient Climate 4123 

Response TCR and long-term equilibrium sensitivity), the calculations of these were not optimal 4124 

and future studies could apply a methodology similar to that used here to quantify them, or other 4125 

quantities perhaps more relevant to medium-term warming, more rigorously. 4126 

 4127 

After extensively examining the evidence qualitatively and quantitatively (sections 3-5), we 4128 

followed a number of past studies and used Bayesian methods to attempt to quantify the 4129 

implications and probability distribution function (PDF) for S. It must be remembered that every 4130 

step of this process (choosing priors, computing likelihoods, etc.) involves judgments or models, 4131 

and results will depend on assumptions and assessments of structural uncertainties that are hard 4132 
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to quantify. Thus we emphasize that a solid qualitative understanding of how the evidence stacks 4133 

up is at least as important as any probabilities we assign. Nonetheless, sensitivity tests shown in 4134 

section 7 suggest that our results are not very sensitive to reasonable assumptions in the statistical 4135 

approach. 4136 

8.2 Key findings 4137 

 4138 
Each main line of evidence considered here—process knowledge, the historical warming record, 4139 

and the paleoclimate record—accords poorly with values outside the traditional “Charney” range of 4140 

1.5-4.5 K for climate sensitivity S. When these lines of evidence are taken together, because of 4141 

their mutual reinforcement, we find the “outside” possibilities for S to be substantially reduced 4142 

compared to those from individual lines of evidence. Whatever the true value of S is, it must be 4143 

reconcilable with all pieces of evidence; if any one piece of evidence effectively rules out a 4144 

particular value of S, that value does not become likely again just because it is consistent with 4145 

some other, weaker, piece of evidence as long as there are other S values consistent with all the 4146 

evidence (see Stevens et al., 2016). If on the other hand every value of S appeared inconsistent 4147 

with at least one piece of evidence, the evidence would need reviewing to look for mistakes. But 4148 

we do not find this situation. Instead we find that the lines are broadly consistent in the sense that 4149 

there is plenty of overlap between the ranges of S each supports. This strongly affects our 4150 

judgment of S: if the true S were 1 K, it would be highly unlikely for each of several lines of 4151 

evidence to independently point toward values around 3 K. And this statement holds even when 4152 

each of the individual lines of evidence is thought to be prone to errors. 4153 

 4154 

We asked the following question (following Stevens et al., 2016): what would it take, in terms of 4155 

errors or unaccounted-for factors, to reconcile an outside value of S with the totality of the 4156 

evidence? A very low sensitivity (S ~ 1.5 K or less) would require all of the following: 4157 

 4158 

● Negative low-cloud feedback. This is not indicated by evidence from satellite or process-4159 

model studies and would require emergent constraints on GCMs to be wrong. Or, a strong 4160 

and unanticipated negative feedback from another cloud type such as cirrus, which is 4161 

possible due to poor understanding of these clouds but is neither credibly suggested by any 4162 

model, nor by physical principles, nor by observations (section 3). 4163 

● Cooling of climate by anthropogenic aerosols over the instrumental period at the extreme 4164 

weak end of the plausible range (near zero or slight warming) based both on direct 4165 

estimates and attribution results using warming patterns. Or, that forced ocean surface 4166 

warming will be much more heterogeneous than expected and cooling by anthropogenic 4167 

aerosols is from weak      to middle of the assessed range (section 4). 4168 

● Warming during the mid-Pliocene Warm Period well below the low end of the range inferred 4169 

from observations, and cooling during the Last Glacial Maximum also below the range 4170 

inferred from observations. Or, that S is much more state-dependent than expected in 4171 

warmer climates and forcing during these periods was higher than estimated (section 5). 4172 

 4173 

In other words, each of the three lines of evidence strongly discounts the possibility of S around 4174 

1.5 K or below: the required negative feedbacks do not appear achievable, the industrial-era global 4175 

warming of nearly 1 K could not be fully accounted for, and large global temperature changes 4176 

through Earth history would also be inexplicable. 4177 

 4178 

A very high sensitivity (S > 4.5 K) would require all of the following to be true: 4179 
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 4180 

● Total cloud feedback stronger than suggested by process-model and satellite studies. (     4181 

Section 3). 4182 

● Cooling by anthropogenic aerosols near the upper end of the plausible range. Or, that 4183 

future feedbacks will be much more positive than they appear from this historical record 4184 

because the mitigating effect of recent SST patterns on planetary albedo has been at the 4185 

high end of expectations (     Section 4). 4186 

● Much weaker-than-expected negative forcing from dust and ice sheets during the Last 4187 

Glacial Maximum (section 5). Or, a strong asymmetry in feedback state-dependence 4188 

(significantly less positive feedback in cold climates than in the present, but relatively little 4189 

difference in warmer paleoclimates). 4190 

 4191 

Thus, each of the three lines of evidence also argues against very high S, although not as strongly 4192 

as they do against low S. This is mainly because of uncertainty in how strongly “pattern effects” 4193 

may have postponed the warming from historical forcing, which makes it difficult to rule out the 4194 

possibility of warming accelerating in the future based on what has happened so far. Indeed, we 4195 

find that the paleoclimate record (in particular, the Last Glacial Maximum) now provides the 4196 

strongest evidence against very high S, while all lines provide more similar constraints against low 4197 

S (paleo slightly less than the others).  4198 

 4199 

An important question governing the probability of low or high S is whether the lines of evidence 4200 

are independent, such that multiple chance coincidences would be necessary for each of them to 4201 

be wrong in the same direction (section 6). For the most part, the various elements in low- and 4202 

high-S scenarios do appear superficially independent. For example, while possible model errors 4203 

are identified that (if they occurred) could affect historical or paleo evidence, they mostly appear 4204 

unrelated to each other or to global cloud feedback or model-predicted S. Some key unknowns act 4205 

in a compensating fashion (i.e., where an unexpected factor would oppositely affect two lines of 4206 

evidence, effectively cancelling out most of its contributed uncertainty). Even in the one identified 4207 

possibility (see below) where an unknown could affect more than one line of evidence in the same 4208 

direction, modelling indicates a relatively modest impact on the PDF. 4209 

 4210 

IPCC AR5 concluded that climate sensitivity      is likely (≥ 66% probability) in the range 1.5-4.5 K. 4211 

The probability of S being in this range is 93% in our Baseline calculation, and is no less than 82% 4212 

in all other “plausible” calculations considered as indicators of reasonable structural uncertainty 4213 

(see section 7.3). Although consistent with IPCC’s “likely” statement, this indicates considerably 4214 

more confidence than the minimum implied by the statement. We also find asymmetric 4215 

probabilities outside this range, with negligible probability below 1.5 K but up to an 18% chance of 4216 

being above 4.5 K (7% in the Baseline calculation). This is consistent with all three lines of 4217 

evidence arguing against low sensitivity fairly confidently, which strengthens in combination. Given 4218 

this consensus, we do not see how any reasonable interpretation of the evidence could assign a 4219 

significant chance to S < 1.5 K. Moreover our plausible sensitivity experiments indicate a less-than-4220 

5% chance that S is below 2 K: our Baseline 5-95% range is 2.3-4.7 K and remains within 2.0 and 4221 

5.7 K under reasonable structural changes. 4222 

 4223 

Since the extreme tails of the PDF of S are more uncertain and possibly sensitive to “unknown 4224 

unknowns” and mathematical choices, it may be safer to focus on 66% ranges (the minimum for 4225 

what the IPCC terms “likely”). This range in our Baseline case is 2.6-3.9 K, a span less than half 4226 

that of AR5’s likely range, and is bounded by 2.3 and 4.5 K in all plausible alternative calculations 4227 

considered. Although we are more confident in the central part of the distribution, the upper tail is 4228 
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important for quantifying the overall risk associated with climate change and so does need to be 4229 

considered (e.g., Weitzman, 1989; Sutton, 2019). We also note that allowing for “surprises” in 4230 

individual lines of evidence via “fat-tailed” likelihoods had little effect on results, as long as such 4231 

surprises affect the evidence lines independently. 4232 

 4233 

Our S is not the true equilibrium sensitivity ECS, which is expected to be somewhat higher than S 4234 

due to slowly emerging positive feedback. Values are similar, however, because we define S for a 4235 

quadrupling of CO2 while ECS is defined for a doubling, which cancels out most of the expected 4236 

effect of these feedbacks (section 2.1). We find that the 66% ECS range, at 2.6-4.1 K (Baseline) 4237 

bounded by 2.4 and 4.6 K, is not very different from that of S, though slightly higher. Thus, our 4238 

constraint on the upper bound of the ‘likely’ range for ECS is close to that of the IPCC AR5 and 4239 

previous assessments, which formally adopt an equilibrium definition. The constraint on the lower 4240 

bound of the “likely” range is substantially stronger than that of AR5 regardless of the measure 4241 

used. The uncertainties in ECS and S assessed here are similar because each is somewhat better 4242 

constrained than the other by some subset of the evidence. 4243 

 4244 

Among the plausible alternate calculations (see section 7.3), the one producing the weakest high-4245 

end constraint on S uses a uniform-S-inducing prior, which shifts the ranges upward to 2.8-4.5 K 4246 

(66%) and 2.4-5.7 K (90%). Our Baseline calculation assumes feedbacks are independent (or that 4247 

dependence is unknown), which predicts a non-uniform prior PDF for S; to predict a uniform one 4248 

requires instead assuming a known, prior dependence structure among the feedbacks (see section 4249 

7.2). Although lack of consensus on priors remains a leading-order source of spread in possible 4250 

results, we still find that sensitivity to this is sufficiently modest that strong constraints are possible, 4251 

especially at the low end of the S range.  4252 

 4253 

The main reason for the stronger constraints seen here in contrast to past assessments is that new 4254 

analysis and understanding has led us to combine lines of evidence in a way the community was 4255 

not ready to do previously. We also find that the three main lines of evidence are more consistent 4256 

than would be expected were the true uncertainty to be as large as in previous assessments. 4257 

While some individual past studies have assigned even narrower ranges, as discussed above, 4258 

past studies have often been overconfident in assigning uncertainty so not too much weight should 4259 

be given to any single study. We note that although we did not use GCM “emergent constraint” 4260 

studies using present-day climate system variables in our base results, our results are nonetheless 4261 

similar to what those studies suggest in the aggregate (see section 3.6 for discussion of these 4262 

studies and why they were excluded from our Baseline calculation). 4263 

 4264 

New models run for CMIP6 are showing a broader range of S than previous iterations of CMIP 4265 

(Zelinka et al., 2020). Our findings are not sensitive to GCM S distributions since we do not directly 4266 

rely on them (see section 6.1     ). The highest and lowest CMIP6 S values are much less 4267 

consistent with evidence analyzed here than those near the middle of the range. Some of the 4268 

effects quantified in this paper with the help of GCMs were looked at only with pre-CMIP6 models, 4269 

and interpretations of evidence might therefore shift in the future upon further analysis of newer 4270 

models, but we would not expect such shifts to be noteworthy unless they involved significant 4271 

improvements in model skill against relevant observations (see below). 4272 

 4273 

 4274 
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8.3 Looking forward 4275 

 4276 

Our approach not only yields new estimates of uncertainty, but points to particular directions in 4277 

which research could most productively improve constraints in the future. Here we review these; 4278 

for more details see sections 3.7, 4.3, 5.5 and 6.2. 4279 

 4280 

One uncertainty particularly stands out in our analysis. Recent inhomogeneities of surface warming 4281 

in the Pacific (with less or no warming in the cooler regions compared to the warmer regions) are 4282 

not fully captured by any CMIP5 coupled climate models with historical forcings, and we are 4283 

unsure whether this is due predominantly to model errors in internal variability, ocean heat uptake, 4284 

or the equilibrium forced SST warming pattern. Internal variability is strongly suspected and ocean 4285 

heat uptake errors are also likely; but if unexpected model errors in the equilibrium response 4286 

pattern are involved, this would affect both process and historical evidence, compromising the 4287 

assumed independence. A preliminary calculation (section 6.3) suggests that this issue is unlikely 4288 

to substantially change results, but the matter needs further exploration.  Therefore a high priority 4289 

for further constraining climate sensitivity, especially at the high end, is to more convincingly 4290 

explain this pattern of surface warming (related to the so-called “warming hiatus”) and quantify its 4291 

impact on the planetary energy balance. It might be similarly helpful to better understand the 4292 

“Grand Hiatus” of the 1960s. Doing so would make historical warming a better constraint. 4293 

 4294 

Process information played a significant role in our analysis (section 3), but is currently limited by 4295 

our understanding of how behavior we observe in response to short-term (i.e. inter-annual) 4296 

variability relates to feedbacks on forced climate change. Further modeling work is needed to 4297 

improve this. There has been rapid progress in recent years in the understanding of cloud 4298 

feedback mechanisms, and continued progress could substantially improve constraints—but with 4299 

much recent progress on tropical low clouds, more emphasis is needed on other cloud types. 4300 

Satellite observations that provide information on the vertical distribution of clouds and its changes 4301 

have recently proven valuable in testing model feedback predictions, and their continuation would 4302 

increase the chances of further constraints. 4303 

 4304 

The historical record currently provides a useful constraint only against very low S but there is 4305 

potential for improvement. Better constraints on aerosol forcing have proven elusive, but with 4306 

further effort using more comprehensive models, the time- and geographic evolution of climate 4307 

signals may finally allow the cooling by aerosols and warming by greenhouse gases to be teased 4308 

apart, with the decrease in emissions from some regions providing potential for better constraints 4309 

already. Progress on quantifying “pattern effects” (see above) is also ongoing and will benefit from 4310 

improved process understanding. To fully resolve both issues may require further improvement of 4311 

climate models to better reproduce decadal climate variations. Evidence from the historical record 4312 

will also continue to grow in its power to constrain S with the gradual lengthening of the record 4313 

(with the crucial proviso that the key variables continue to be well monitored by global observing 4314 

systems). This should particularly help with disentangling aerosol cooling from greenhouse 4315 

warming, due to divergent forcing patterns with aerosol influences globally close to flat while 4316 

greenhouse gases are continuing to sharply increase.  4317 

 4318 

Evidence from the paleo record will benefit from the continuing growth of modeling activities and 4319 

improved observation/proxy characterization of other warm periods in the geological past, which 4320 

are not yet sufficiently understood to be considered here. Additionally, research into the 4321 

magnitudes, efficacies and uncertainties of forcings in the paleoclimate periods assessed is also 4322 
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needed. In particular, better characterization of ice sheets, dust, and potentially other aerosol 4323 

effects are needed. How S depends on background state remains a critical topic where better 4324 

observations and modeling are needed. We strongly suggest that more work on paleoclimate be 4325 

performed with the same models that are being used for the historical and future projections. 4326 

 4327 

Although any single metric of global warming has limitations, S is a bedrock parameter of the 4328 

global climate system. The scientific community has had difficulty narrowing its uncertainty range 4329 

far beyond the prescient initial estimate by Charney (1979) which was based on very limited 4330 

information. While much research since has confirmed this range, we now argue that in 4331 

combination this wealth of evidence has indeed narrowed it, and shifted the central value upward. 4332 

Moreover we see prospects for research to further narrow the range in the not too distant future, 4333 

and believe that this is an important continuing goal for climate science. 4334 

  4335 
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Table      1. Assessed values for ∆F2xCO2 and climate feedbacks λi based upon the various lines of 5932 
process evidence. The “Source” column identifies which lines of process evidence support the 5933 
assessed value. If the source column has a double check mark (✓✓), then it signifies that the line of 5934 
evidence provided a usable quantitative estimate. If the source column has a single check mark 5935 
(✓), then it signifies that the line of evidence provided qualitative support for mechanisms involved 5936 
or the sign of the feedback but does not provide a usable quantitative estimate. If the source 5937 
column is without a check mark, then it signifies that the line of evidence was not used in the 5938 
assessment of that term. The reason for not using a line of evidence for a given term varies but 5939 
typically was because a line of evidence is absent or not-applicable for that term or because it 5940 
provided inconsistent or untrustworthy results. Values are reported as Gaussians in the format 5941 
N(x,y), where x is the mean, and y is the standard deviation. Means and standard deviations have 5942 
units of W m–2 for ∆F2xCO2 and W m–2 K–1 for feedbacks. ∆F2xCO2 is specified as a prior, λ and λclouds 5943 
as a PDF, and the remaining λi as likelihood functions. 5944 
 5945 

Term Value Source 

GCMs Observations Process- 
Resolving 
Models 

Theory 

Effective Radiative Forcing from a CO2 doubling 
∆F2xCO2 

N(+4.00, 0.30) 
  

✓✓ ✓ ✓✓ ✓ 

Planck Feedback N(–3.20, 0.10) ✓✓  ✓✓   ✓✓ 

Water Vapor + Lapse Rate Feedback N(+1.15, 0.15)  ✓✓ ✓✓ ✓  ✓ 

Surface Albedo Feedback N(+0.30, 0.15) ✓✓  ✓✓   ✓ 

Individual Cloud Feedbacks  

High-Cloud Altitude  N(+0.20, 0.10)  ✓✓ ✓ ✓ ✓  

Tropical Marine Low-Cloud  N(+0.25, 0.16)   ✓✓ ✓✓ ✓  

Tropical Anvil Cloud Area  N(–0.20, 0.20)   ✓✓   ✓ 

Land Cloud Amount  N(+0.08, 0.08)  ✓✓ ✓   ✓ 

Middle Latitude Marine Low Cloud Amount  N(+0.12, 0.12)  ✓✓ ✓✓   ✓  

High Latitude Low-Cloud Optical Depth  N(+0.00, 0.10)   ✓✓   ✓  

Total Cloud Feedback λclouds   N(+0.45, 0.33)  
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Stratospheric Feedback  N(+0.00, 0.10)  ✓✓ ✓      

Feedbacks Induced by Atmospheric 
Composition Changes 

 N(+0.00, 0.15)  ✓✓       

Climate Feedback Parameter λ  N(–1.30, 0.44)  

 5946 
 5947 
 5948 
 5949 
 5950 
 5951 
Table      2. Emergent Constraints for S based upon present-day climate system variables and 5952 
CMIP models. Emergent constraints are categorized by the type of present-day climate system 5953 
variable (Columns 1 and 2) with the reference for each constraint in Column 3. Column 4 reports 5954 
the authors’ statements about S quoted directly from the cited reference. Column 5 reports a 5955 
central estimate of S from each constraint calculated from the ordinary least squares linear 5956 
regression of S on the present-day climate system variable evaluated at its observed value. The 5957 
data used in these calculations are taken from that compiled by Caldwell et al. (2018). Column 6 5958 
reports a central estimate for λ calculated in the same manner as Column 5. The last row reports 5959 
the averages and standard deviations of the data in Columns 5 and 6. 5960 

 Category Present-day climate 
system variable 

Reference Authors’ statements 
about S 

Central 
estimate of 
S (K) from 
ordinary 
linear 
regression 

Central 

estimate of λ 
(W m

–2
 K

–1
) 

from 
ordinary 
linear 
regression 

 Low Cloud  Boundary layer cloud 
amount response to 
SST variations in 
subtropical 
stratocumulus regions 
(after removing the 
stability contribution) 

Qu et al. 
(2014) 

No statement 3.74 –1.03 

  Seasonal response of 
boundary layer cloud 
amount to SST 
variations in oceanic 
subsidence regions 
between 20°and 40° 
latitude 

Zhai et al. 
(2015) 

Models consistent with 
observation “have S 
higher than the multi-
model mean with “an 
ensemble mean S of 3.9 K 
and a standard deviation 
of 0.45 K” 

4.13 -0.82 

  Fraction of tropical 
clouds with tops below 
850 hPa whose tops are 
also below 950 hPa 

Brient et al. 
(2016) 

Models consistent with 
observation “have S 
between 2.4 and 4.6 K” 

3.06 –1.20 

  Sensitivity of cloud 
albedo in tropical 
oceanic low-cloud 
regions to present-day 
SST variations 

Brient and 
Schneider 
(2016) 

“Most likely S estimate 
around 4.0 K; an S below 
2.3 K becomes very 
unlikely (90% confidence)” 

3.68 -0.92 
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 General 
Cloud 

Difference between 
tropical and southern-
hemisphere midlatitude 
total cloud fraction 

Volodin 
(2008) 

An estimate of S is “3.6 ± 
0.3” (1-sigma) 

3.63 -0.97 

  Extent to which cloud 
albedo is small in warm 
SST regions and large 
in cold SST regions 

Siler et al. 
(2017) 

A likely value of S is “3.68 
± 1.30 K (90% 
confidence)” 

3.55 -0.97 

 Humidity Southern hemisphere 
zonal-average mid-
tropospheric relative 
humidity in dry-zone 
between 8.5°–20°S 

Fasullo and 
Trenberth 
(2012) 

“Many models, particularly 
those with low S, … are 
identifiably biased” 

4.12 -0.96 

  Tropical zonal-average 
lower-tropospheric 
relative humidity in 
moist convective region 

Fasullo and 
Trenberth 
(2012) 

“Only a few models, 
generally of lower 
sensitivity, are identifiably 
biased” 

3.42 –1.06 

  Tropospheric zonal-
average relative 
humidity vertically- and 
latitudinally-resolved 
between 40°N and 40°S  

Su et al. 
(2014) 

“Models closer to the 
satellite observations tend 
to have S higher than the 
multi-model mean” 

3.85 -0.90 

  Strength of resolved-
scale humidity mixing 
between the boundary 
layer and the lower 
troposphere in tropical 
East Pacific and Atlantic 

Sherwood 
et al. (2014) 

No specific statement 4.13 -0.76 

  Strength of small-scale 
humidity mixing 
between the boundary 
layer and the lower 
troposphere in tropical 
convective regions 

Sherwood 
et al. (2014) 

No specific statement 3.26 –1.14 

  Sum of Sherwood 
resolved-scale and 
small-scale humidity 
mixing 

Sherwood 
et al. (2014)  

“Observations at face 
value implies a most likely 
S of about 4 K, with a 
lower limit of about 3 K.” 

4.07 -0.83 

 Precipitation Strength of model’s 
precipitation bias in the 
“double-ITCZ” (Inter-
Tropical Convergence 
Zone) region 

Tian (2015) “S might be in the higher 
end of its range (~4.0 K)” 

4.02 -0.87 

 Radiation Net top-of-atmosphere 
radiation averaged over 
the southern 
hemisphere 

Trenberth 
and Fasullo 
(2010) 

“Only the more sensitive 
[higher S] models are in 
the range of observations” 

3.53 –1.05 
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 Temperature Amplitude of seasonal 
cycle of surface 
temperature 

Covey et al. 
(2000) 

No specific statement 3.23 –1.16 

  Strength of global-
average surface 
temperature inter-
annual variations and 
their temporal 
autocorrelation 

Cox et al. 
(2018)  

The emergent constraint 
“yields a central [S] 
estimate of 2.8 K with 66% 
confidence limits … of 
2.2–3.4 K.” 

2.91 –1.22 

 Circulation Latitude of the southern 
edge of the Hadley cell 
in austral summer 

Lipat et al. 
(2017) 

Models “closer to the 
observations …  tend to 
have smaller S values” 

2.80 –1.23 

Average 3.60 ± 0.42 –1.01 ± 0.14 

  5961 

  5962 
 5963 
Table 3     : Temperature trends used to assess energy budget constraints on Shist. Uncertainties 5964 
are 5% and 95% ranges and exclude the contribution from internal variability (section 4.1.1). The 5965 
bold row marks the baseline values chosen for the main estimate of Shist, although the full range of 5966 
estimates are used in assessing uncertainties.  5967 

Dataset Time Period Observed 

Blended 

Trend 

(SAT/SST) 

(K) 

Observed 

Blended 

Trend 

uncertaint

y (K) 

SAT- 

Blended 

trend 

from 

models 

(K) 

SAT-

Blended  

Trend 

uncertainty 

(K) 

Estimated

SAT Trend 

(K) 

SAT Trend 

uncertainty (K)  

Cowtan and 

Way 

2006_2018 minus 

1850–1900 

0.96  ±0.07 0.09 ±0.04 1.02 ±0.08 

Cowtan and 

Way 

2006_2018 minus 

1861–1880 

0.94 ±0.07 0.08 ±0.04 1.03 ±0.08 

  5968 
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 5969 

 5970 
Table 4     : Historic ERF medians for the full 1750–2018 period and the two time periods analyzed 5971 
in this report. Half gaussians are used to create the individual PDFs for sampling unless except for 5972 
the aerosol ERF in the BASELINE case which employs the unconstrained PDF from Figure 8 of 5973 
Bellouin et al. (2020). The row appearing in bold-face contains the values used in the Baseline 5974 
calculation. 5975 
 5976 

Periods Carbon 
dioxide 

Other 
well 
mixed 
greenho
use 
gases 

Troposp
heric 
ozone 

Stratosp
heric 
ozone 

Aerosol Land-
use 
albedo 

Stratosp
heric 
water 
vapor 

Black 
Carbon  
on snow 

Contrail
s 

Solar Volcani
c 

BASELINE ERFs with Bellouin et al. (2020) unconstrained aerosol PDF 

1750 to 
2018 2.147 1.110 0.425 -0.050 –1.395 -0.163 0.079 0.040 0.050 0.000 -0.171 

1861- 
1880 
 to 
2006- 
2018 1.731 0.969 0.348 -0.050 –1.179 -0.106 0.064 0.020 0.048 0.017 -0.113 

1850- 
1900 
 to 
2006- 
2018 1.705 0.961 0.344 -0.050 –1.092 -0.105 0.064 0.018 0.048 0.011 0.180 

Modified aerosol ERF to extended Boucher et al. (2013) estimate, other columns as above 

1750 to 
2018 

    
-0.842 

      

1861- 
1880 
 to 
2006- 
2018 

    

-0.667 

      

  5977 



  

140 
 

   

Table 5     . Comparison of our Shist estimates with previous studies that are representative of the 5978 
literature range of sensitivity estimates  (for a complete collection see Knutti et al., 2017). Medians 5979 
and 5-95% ranges are shown. The temperature estimates include the effects of internal variability 5980 
(section 4.1.1). When not given, these are inferred assuming Gaussian distributions. The  row 5981 
appearing in bold-face contains the values used in the Baseline calculation. 5982 

Study Periods ΔF2xCO2 

(Wm
–2

) 

ΔF 

(Wm
–2

) 

ΔN 

(Wm
–2

) 

ΔT 

(K) 

S (K) 

published  

Shist (K) 

Eqn (19)      
Shist (K) 

Eqn (21)      
with 

uniform 

Shist prior 

This 
study(Cow
tan and 
Way, SAT, 
Bellouin et 
al  (2020) 
aerosol 
ERF) 
BASELINE 

1861–
1880 
2006–
2018 

4.0 
(3.51,4.49) 

1.83 (-

0.03,2.71)  

0.6 
(0.3,0.9) 

1.03 
(0.89,1.17) 

- 3.11   
 (1
.86,14.41) 

4.26  
(2.04,16.13 ) 
 
 

This 
study(Cowt
an and 
Way, 
Blended) 

1861–
1880 
2006–
2018 

BASELINE BASELINE BASELINE 0.96 
(0.82,1.1) 
 

 2.90   
 (1
.73,13.52) 

4.02  
(1.90,16.01 ) 
 
 
 

This Study  
BASELINE 
SAT, 
modified 
start dates 

1850–
1900 
2006–
2018 

BASELINE 2.09 
(0.25,2.96) 
 
 
  

BASELINE 1.02 
(0.9,1.14) 
 
 

 2.63   
 (1
.66,10.97) 

3.52  
(1.80,15.33) 
 
 

This Study  
BASELINE
SAT, AR5 
aerosol 
ERF 

1861–
1880 
2006–
2018 

BASELINE 2.27 
(1.45,2.98) 
  

BASELINE BASELINE 
 

 2.49   
 (1
.66, 5.05) 
 

2.79  
(1.76,7.48) 
 
 
 

Lewis and 
Curry, 2018 

1869–
1882 to 
2007–
2016 

3.8 
(3.06,4.54) 

2.5  
(1.68, 3.36) 

0.5  
(0.25, 0.75) 

0.8  
(0.65, 0.95) 

1.5  
(1.05,2.45) 

  

Skeie et al., 
2014 

observatio
ns up to 
2010 (from 
1850 and 
1945/50 
for OHC) 

 1.5 (0.27–
2.5) in 2010 

 1.4 (0.79–
2.2) TCR 

1.8  
(0.9, 3.2) 
 

  

Skeie et al., 
2018      

observatio
ns 
extended 
up to 2014 
 

 2.3 
(1.3, 3.4) 

 1.4  
(0.9, 2.0) 
TCR 

2.0 
(1.2, 3.1) 

  

Johansson 

et al., 2015 

observatio
ns up to 
2011 
(from 
1880, 
1957 for 
OHC) 

3.71 2.29 (ERF 
from IPCC 
AR5 Table 
8. SM5) 

 0.37–11.1 
(prior ECS 
range for 
CO2 
doubling) 

N/A (2.0, 
3.2) 90% 
CI 
 
2.50 mode 

  

 5983 

 5984 

 5985 

 5986 

  5987 
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Table 6     . Statistics of the likelihood P(Ehist|S) combined with a uniform prior (from 0 to 20 K) on 5988 
S, based on the two different estimates of future feedback changes as outlined above.        The 5989 
method based on prescribed observed SST patterns is chosen as the preferred estimate (in bold).  5990 

Scaling method Max likelihood 
(K) 

Median (K) 5% value (K) 95% value (K) 

None 2.5  4.3 2.0 16.1 

Transient 
simulations  

2.9  
 
 

6.2  2.3 17.9 

Observed SST 
pattern 

3.8  8.5  2.8 18.6 

 5991 

5992 
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Table 7     . Parameters of the distributions that are used to estimate S from the cold climate states 5993 
(equation 5.1). Radiative forcing per CO2 doubling from section 3.2.1. 5994 

Term Distribution 

ΔT (K) N(-5, 1) 

∆F2xCO2 (Wm−2)  N(4.0, 0.3) 

ΔF’ (Wm−2) N(−6.15, 2) 

α N(0.1, 0.1) 

ζ  N(0.06, 0.2) 

 5995 

Table 8     . Parameters of the distributions that are used to estimate S from the mPWP, equation 5996 

5.2. Radiative forcing per CO2 doubling from section 3.2.1. 5997 

Term Distribution 

ΔT (K) N(3, 1) 

CO2 (ppm)  N(375, 25) 

𝛥F2xCO2 (Wm−2)  N(4.0, 0.3) 

fCH4 N(0.4, 0.1) 

fESS N(0.5, 0.25) 

ζ  N(0.06, 0.2) 

 5998 

  5999 



  

143 
 

   

Table 9     . Parameters of the distributions that are used to estimate S from the PETM, equation 6000 

5.3. Radiative forcing per CO2 doubling from section 3.2.1. 6001 

Term Distribution 

ΔT(K) N(5, 1) 

CO2(ppm) N(2400, 700) 

𝛥F2xCO2 (Wm−2)  N(4.0, 0.3) 

fCH4 N(0.4 ,0.2) 

β N(0, 0.5) 

ζ  N(0.06, 0.2) 

  6002 
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 6003 

 5th %ile 17th %ile 50th %ile 83rd %ile 95th %ile Mode Mean 

        

Baseline 

(UL, Uniform λ Prior)* 2.3 2.6 3.1 3.9 4.7 3.0 3.2 

US  

(Uniform S Prior)* 2.4 2.8 3.5 4.5 5.7 3.1 3.7 

        

UL No Process 2.0 2.4 3.1 4.1 5.2 2.7 3.3 

UL No Historical* 2.0 2.3 2.9 3.7 4.6 2.6 3.1 

UL No Paleo Warm* 2.2 2.5 3.1 4.0 5.1 2.9 3.3 

UL No Paleo Cold* 2.3 2.6 3.2 4.1 5.1 3.0 3.4 

UL No Paleo 2.2 2.6 3.3 4.6 6.4 2.9 3.8 

US No Process 2.3 2.8 3.7 5.2 6.9 3.1 4.0 

        

UL + EC 

(Emergent Constraints) 2.4 2.7 3.2 4.0 4.8 3.1 3.4 

Fat tails 2.2 2.5 3.1 4.0 4.9 2.8 3.3 

Table 10.      Mean, Mode, Median and percentile values of posterior PDFs for S. Sensitivity tests 6004 

considered to bound plausible structural uncertainty are marked with a *. Further statistics are 6005 

available in the online data repository (see Acknowledgments). 6006 

 6007 

                   6008 
 6009 

 Baseline Uniform-S PPD 

ECS 3.2 [2.6,4.1] 3.5 [2.7,4.6] 

TCR 1.8 [1.5, 2.2] 1.9 [1.6, 2.4] 

RCP2.6 warming 1.0 [0.7, 1.4] 1.2 [0.8, 1.7] 

RCP4.5 warming 1.8 [1.4, 2.3] 2.0 [1.5, 2.6] 

RCP6.0 warming 2.0 [1.6, 2.6] 2.3 [1.7, 3.0] 

RCP8.5 warming 3.5 [3.0, 4.2] 3.8 [3.2, 4.8] 

 6010 
 6011 
Table 11     . Medians and 66% probability ranges (in brackets), for ECS (for one doubling of CO2), 6012 
TCR, and warmings in Fig. 23     , for our Baseline and using a uniform prior on S. All values in K. 6013 
 6014 
 6015 
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 6020 

6021 
Figure      1.  Relation of (a) other climate sensitivity metrics, and (b) predicted warming by late 6022 
this century, to S as defined in section 2.1. In (a), symbols show 15 LongRunMIP model estimates 6023 
of the equilibrium warming per doubling of CO2 (Rugenstein et al., 2019b), with small purple 6024 
symbols showing equilibria in 4xCO2 simulations and large black symbols equilibria in 2xCO2 6025 
simulations. Blue filled circles show TCR from CMIP5 models. In (b), projected change in global-6026 
mean temperature in 2079–2099 relative to 1986–2005, under the RCP8.5 (red), RCP4.5 6027 
(magenta) and RCP2.6 (cyan) scenarios, from 24 CMIP5 models. CMIP5 data are from Grose et 6028 
al. (2018).  For each set of points, a best linear fit is shown, with one standard deviation shown in 6029 
grey shading (assumed homogeneous except for ECS where it is assumed to scale linearly with 6030 
S); see section 7.4 for further details on fits. 6031 
 6032 
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 6033 
Figure      2. A Bayesian network diagram showing the dependence relationships between main 6034 
variables in the inference model. Circles show uncertain variables, whose PDFs are estimated; 6035 
squares show evidence (random effects on the evidence would appear as a second “parent” 6036 
variable for each square, and are omitted for simplicity). Colors distinguish the three main lines of 6037 
evidence and associated variables (blue = process, orange = historical, red = paleoclimate). For 6038 
paleoclimate, only one ∆F/∆T climate-change pair is shown but two independent ones are 6039 
considered (see section 5). 6040 
 6041 
  6042 
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 6043 
 6044 

 6045 
 6046 

 6047 
Figure 3     . Assessed values of the 2xCO2 Effective Radiative Forcing (ERF) at the TOA. Orange 6048 
bars represent Stratospheric-Adjusted Radiative Forcing (SARF), tropospheric and surface albedo 6049 
adjustments, and their sum (i.e., ERF). The error bar indicates the 5-95% ranges of the respective 6050 
terms. Further decomposed components are presented for reference by blue bars based on 6051 
Etminan et al. (2016) and Smith et al. (2018). The contribution from land surface warming has 6052 
been excluded in the surface adjustment. 6053 
   6054 
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 6055 

 6056 
 6057 
 6058 
Figure 4     . Estimates of global mean climate feedbacks from observations of interannual 6059 
variability (blue triangles), from CMIP5 and CMIP6 model simulations of global warming in 6060 
response to an abrupt CO2 quadrupling (colored circles—orange: Vial et al., 2013; green: Caldwell 6061 
et al., 2016; red: Colman and Hanson, 2017; purple: Zelinka et al., 2020), and from this 6062 
assessment (black squares). Error bars on climate model feedback estimates span the 1-standard-6063 
deviation range across models. Observational estimates are derived using a combination of ERA-6064 
Interim meteorological fields and CERES TOA radiative fluxes (Loeb et al., 2009) covering the 6065 
period 03/2000 to 12/2010 (Dessler, 2013). Error bars on the observational estimates are 1-sigma 6066 
uncertainties, accounting for autocorrelation. Individual feedbacks are computed by multiplying 6067 
temperature-mediated changes in relevant fields by radiative kernels (Shell et al., 2008; Soden et 6068 
al., 2008; Huang et al., 2017). Error bars on values from this assessment correspond to 1-sigma 6069 
uncertainties. Note that Planck feedback estimates are offset by 2.5 W m−2 K−1 from their actual 6070 
values in order that they appear within the plot range.  6071 
 6072 
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  6075 
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 6076 
 6077 
 6078 
 6079 
 6080 
 6081 
 6082 
 6083 
 6084 
 6085 
 6086 
 6087 
 6088 
 6089 
 6090 
 6091 
 6092 
 6093 
 6094 
 6095 
 6096 
 6097 
 6098 
 6099 
 6100 
 6101 
 6102 
 6103 
Figure 5     . Multi-model and zonal-mean cloud diagnostics: (a) Mean cloud fraction (contours, 6104 
every 5%) and warming response (shading), with stippling where at least 20 of the 25 contributing 6105 
CMIP5 models agree on the sign of the response; (b) Inter-model standard deviation of cloud 6106 
fraction response; (c) Total cloud feedback from all clouds and also partitioned into contributions 6107 
from low (cloud top pressures > 680 hPa) and other (‘non-low’, cloud top pressures < 680 hPa)  6108 
clouds; (d) non-low- and (e) low-cloud feedback partitioned into amount, altitude, and optical-depth 6109 
responses to warming. Latitudes where at least 14 of the 18 contributing models agree on the sign 6110 
of the feedback are plotted with a solid line. Feedbacks in (c-e) are calculated from abrupt4xCO2 6111 
simulations of 7 CMIP5 models and from equilibrium 2xCO2 simulations of 11 CMIP3 slab-ocean 6112 
models (see Zelinka et al., 2016, for details). Note that all plots use an area-weighted latitude 6113 
scale. Figure based upon Zelinka et al. (2016).  6114 
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 6119 
 6120 
Figure 6     . Local tropical low-cloud feedbacks from observations, large-eddy simulations, and 6121 
global climate models from Klein et al. (2017). Each dot represents the feedback from an individual 6122 
research study. The upper horizontal bar indicates the central estimate and 90% confidence 6123 
interval for the feedback inferred in that study from the observations. The lower bar indicates the 6124 
range of feedbacks simulated by global climate models. Note that our assessment reinterprets the 6125 
upper horizontal bar into a likelihood statement assuming a uniform prior and with considering 6126 
additional evidence (section 3.3.2). 6127 
 6128 
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 6131 
 6132 
 6133 
Figure 7     . Assessed values of individual cloud feedbacks and the total cloud feedback based 6134 
upon process evidence.  For individual cloud feedbacks, maximum likelihood values are shown by 6135 
black diamonds and the widths of blue rectangles, with two times the 1-sigma likelihood values 6136 
shown by the width of the black uncertainty bars. For the total cloud feedback, the mean value of 6137 
the PDF is shown by a black diamond and the width of the accompanying blue rectangle, with two 6138 
times the PDF standard deviation shown by the width of the black uncertainty bar. 6139 
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 6148 
    6149 
 Figure 8     . PDFs and likelihood functions based upon the assessment of individual climate 6150 
feedbacks and the emergent constraint literature. (a) PDF for λ from combining evidence on 6151 
individual feedbacks using the Baseline λi prior.  (b) Emergent Constraint likelihood for λ. Note that 6152 
this likelihood is not a PDF. See section 3.6 for an explanation of how the parameters of this 6153 
likelihood function were determined and why they differ from the parameters recorded in Table      6154 
2.  (c) PDF for S from combining evidence on ∆F2xCO2 and individual feedbacks using uniform λi 6155 
priors. 6156 
 6157 
  6158 



  

153 
 

   

 6159 

 6160 
 6161 
 6162 
Figure 9     . Individual feedbacks in CMIP5 climate models (circular symbols) and inferred from 6163 
observations (error bars along the y-axis). The y-axis displays relationships derived from natural 6164 
variability at the inter-annual time-scale using 100 years of pre-industrial control simulations from 6165 
CMIP5 climate models (Colman and Hanson, 2017) and using ~11 years of observations between 6166 
March 2000 and December 2010 (Dessler, 2013). Error bars span the 1-sigma uncertainties of the 6167 
observed feedback estimates. The x-axis displays the long-term feedbacks from climate model 6168 
simulations of the response to an abrupt quadrupling of CO2 (Colman and Hanson, 2017) The 6169 
black dashed line is the 1:1 line whereas the short solid thick lines among the climate model points 6170 
display the ordinary least-squares linear regression lines between simulated inter-annual and long-6171 
term feedbacks. 6172 
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 6179 
 6180 
Figure 10     . Prior and posterior PDFs of total (anthropogenic plus natural) ΔF (Wm–2), comparing 6181 
the 2006–2018 period with the 1861–1880 period.  The black curve shows the prior forcing used in 6182 
the Baseline calculation, which uses the unconstrained aerosol forcing based on Eqn. (8) from 6183 
Bellouin et al. (2020).  The green curve shows the extended AR5 aerosol forcing. The orange 6184 
curve shows the posterior PDF produced when all prior PDFs are updated by all evidence used in 6185 
the full Baseline calculation (see section 7), including process, historical and paleoclimate 6186 
evidence. 6187 
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a) 6190 

 6191 
b) 6192 

 6193 
 6194 

Figure 11     . (a) Likelihood function for Shist derived from the planetary energy budget of the 2006     6195 
–2018      period compared to the 1861–1880 period. Different analyses are shown based on the 6196 
alternative estimates in Table 5. The      dashed line shows the impact of reducing the uncertainty 6197 
in ΔT and ΔN by 90%. The gray line shows the      impact of using the original Cowtan and Way 6198 
(2014) blended dataset that mixes surface air temperature observations with sea-surface 6199 
temperature observations. The orange line shows the impact of using 1850–1900 for the earlier 6200 
period, while the red line shows the impact of using the AR5 aerosol forcing. (b) PDF of Shist based 6201 
on likelihood function in (a) combined with a uniform prior on Shist (black line) and PDF derived 6202 
directly from Equation 19      (green line). 6203 
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 6207 
 6208 

Figure 12     : Illustration of probability density functions from alternative, published approaches 6209 
(as labelled). Tokarska et al. (2020) relies on an energy budget approach using the observed 6210 
warming and ocean heat uptake attributed to greenhouse warming, and is most directly 6211 
comparable to our main approach. The solid line relies on a flat prior in S, the dashed line is 6212 
directly sampled (see text; similar to green line in Figure 11     ), and the dotted line is the same as 6213 
the solid line, but based on doubled variance of climate variability when deriving the attributed 6214 
warming estimates.  Johannson et al. (2015) and Skeie et al. (2018) results are based on time-6215 
space analysis using simple climate model fits to observations and are also depicted for a uniform 6216 
prior in S. Results suggest that use of time-space patterns (either in simple model fits or deriving 6217 
attributed surface and ocean warming) reduce the upper tail of climate sensitivity, yet are affected 6218 
by uncertainty in methods used, particularly if using simple models.  6219 
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 6223 
Figure 13     : Illustration of the pattern effect. (a) Linear trend in observed sea-surface 6224 
temperatures (SSTs) over years 1870–2017 from the AMIP2 dataset (Hurrell et al., 2008). (b) 6225 
Linear trend in CMIP5-mean SSTs over 150 years following abrupt CO2 quadrupling. (c) Global-6226 
mean TOA radiative response induced by perturbing SSTs in one region at a time, calculated as 6227 
anomalous TOA radiative fluxes in response to local SST perturbations in NCAR’s Community 6228 
Atmosphere Model version 5 (CAM5) (Zhou et al., 2017; see also Dong et al., 2019 for comparison 6229 
to CAM4). (d) Relationship between historical feedbacks λhist and the long-term λ in coupled CMIP5 6230 
and CMIP6 models using values from analysis in Lewis and Curry (2018) and Dong et al. (2020) 6231 
(blue points), respectively, and for atmosphere-only simulations from Andrews et al. (2018) 6232 
(orange points). 6233 
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 6239 

6240 
Figure 14     . Likelihoods for S based on historical energy budget estimates accounting for pattern 6241 
effects using different methods. The black curve shows the likelihood we use for our main analysis 6242 
in section 7 which is based on feedback changes estimated using observed SST patterns 6243 
(Andrews et al., 2018) but with inflated uncertainty to account for several considerations described 6244 
in the text. The dotted black line shows the effect of halving the uncertainty in Δλ. The green line 6245 
shows the likelihood accounting for feedback changes estimated from transient simulations of 6246 
coupled climate models (Armour, 2017).   6247 
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6252 
Figure 15     .  Likelihood arising from cold-period evidence (solid line). Dashed line shows the 6253 
likelihood that would arise if state dependence of λ were omitted (α = 0). 6254 

 6255 

 6256 

Figure 16     . Likelihood arising for mPWP. 6257 
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 6258 

Figure 17     . Likelihood arising for the Paleocene-Eocene Thermal Maximum. The maximum 6259 
likelihood value of around 2 K corresponds to a 5 K warming and ~3xCO2 change together with its 6260 
accompanying CH4 increase.  6261 
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 6263 

Figure 18     . Analysis of mPWP and PETM results. Blue and green dashed lines are mPWP and 6264 
PETM results as previously shown. Red line is joint likelihood obtained accounting for dependency 6265 
as described in the text. As explained in section 5.3.2, the mPWP result is our proposed result. 6266 

 6267 

 6268 

 6269 

Figure 19     . Blue-dashed is the cold periods’ likelihood. Red-dashed is the warm periods’ 6270 
likelihood. Magenta solid line is the final combined likelihood from paleoclimate evidence.  6271 
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a) 6273 

  6274 
b) 6275 
         6276 

 6277 
Figure 20     . Posterior PDF for S and comparison of lines of evidence. Panel (a) shows our 6278 

Baseline posterior PDF for S in black, and PDFs for each main line of evidence individually, where 6279 

the process evidence is combined with a uniform λ prior while the others are combined with a 6280 

uniform prior on S. (b) shows marginal likelihoods for S for the various lines of evidence used in 6281 

the Baseline calculation: the individual-feedback process evidence (section 3); the likelihood from 6282 

historical evidence (section 4); and the likelihoods for past warm and cold climates from 6283 

paleoclimate evidence plus their combined likelihood (section 5). All likelihoods are scaled to have 6284 

a maximum value of unity.  Vertical grey lines show the 66% range for the Baseline posterior for S.  6285 
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a) 6288 

 6289 
b) 6290 

 6291 
 6292 
Figure 21     . Prior predictive distributions for (a) λ and (b) S. Our Baseline (UL, red) prior is 6293 
uniform in six λi feedbacks, each ~ U(–10, 10) W m–2 K–1     , compared to an alternative prior  (US, 6294 
orange) which reweights the Baseline prior to be uniform in S from near 0 to 20 K     .  6295 
 6296 
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6300 
Figure 22.      Graphical summary of statistics of posterior PDFs for S. UL is the Baseline 6301 

calculation with a uniform prior on λ and US has a uniform prior on S. The middle group shows the 6302 

effect of removing various lines of evidence in turn. UL + EC shows the impact of including the 6303 

effect of emergent constraints. The effect of substituting fat-tailed distributions for some lines of 6304 

evidence is also shown for the Baseline case.  6305 
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 6309 
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 6311 
Figure 23     . PDFs of the warming by late this century, from our Baseline PDF of S. These 6312 
warming PDFs are obtained by converting S to warming using the best linear fit, then convolving 6313 
the induced PDF with Gaussian uncertainty, as shown by the shading in Fig. 1b. Results from 6314 
RCP6.0 employ data from Forster et al. (2013). Note that the warming is calculated relative to 6315 
1985–2005; approximate warming relative to pre-industrial is shown at the top, based on 0.6 K 6316 
warming having occurred by 1985–2005. Warming was estimated using the difference of 20-year 6317 
means centered on the years 1995 or 2089. 6318 
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 6321 
Figure 24.      PDFs of S in comparison with AR5. The Baseline PDF is shown in black, and its 6322 
66% range (2.6-3.9 K) in grey. Colored curves show PDFs from sensitivity tests which cover a 6323 
range for S which could plausibly arise given reasonable alternative assumptions or interpretations 6324 
of the evidence, summarized by the magenta line (2.3-4.5 K). These are the Baseline case but with 6325 
a uniform S prior (red), the Baseline without the Historical evidence (orange) and the Baseline 6326 
case without the cold paleoclimate evidence (Blue). The 66%-or-greater (“likely”) range from the 6327 
most recent IPCC assessment (AR5) (1.5-4.5 K) is shown in cyan. Circles indicate 17th and 83rd 6328 
percentile values. 6329 
 6330 


